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Abstract

Until recently, researchers would only consider cross-domain flat NER. In this work, we propose an embarrass-
ingly easy but effective approach to the double challenge of cross-domain nested NER. We use a RuBERT-base
encoder and a Biaffine decoder with CNN block as a backbone nested NER model. The actual approach to cross-
domain NER is simple: keep only the common categories between source and target domain datasets, train the
model on a source domain and apply it to a target domain. The results show that proposed method has a drop in
performance compared to the usual training approach, but, unlike latter, does not require any fine-tuning on target
domain data.
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1 Introduction

Recently, cross-domain NER started to become a topic of interest, since it has a number of prac-
tical applications, most importantly facilitating NER for limited-resource domains. However,
domain generalization is a challenging task due to a number of reasons. (Jia and Zhang, 2020)
define three main problems arising while solving cross-domain NER. First, instances of the
same category could mean different things in source and target domain datasets (for more de-
tails, please refer to Section [5.2)). Second, different categories have unequal similarities across
domain. As an intuitive example, category “Country” could mean almost the same thing in
news and biomedical domain, which cannot be surely said about the “Product” category. Last
but not least, source and target dataset may contain varying number and types of categories.

To solve the problem of cross-domain NER, we propose a method that does not use any target
domain data or external data for training. For the experiments, we use NEREL, the largest
dataset in Russian annotated with named entities and relations (Loukachevitch et al., 2021)),
and Russian corpus of NEREL-BIO, an extension of NEREL dataset, which goes deeper into
biomedical domain (Loukachevitch et al., 2023). Our main contributions can be summarized as
the following:

* We explore the existing methods in nested and cross-domain NER.

* We implement a simple, but reasonably effective method for cross-domain nested NER

that requires no fine-tuning on target domain data.

The code for preprocessing, training and experiments can be found at https://github.
com/kamilainl/Cross-Domain-Nested-NER.

2 Related Work

Flat NER approaches, where a single label is predicted for each token, have difficulties with
processing nested entities. To bypass that problem, various nested NER approaches were pro-
posed. Three main types of nested NER methods can be highlighted: seq-to-seq, span-based
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and MRC-based methods. In their work, (Loukachevitch et al., 2021) explore different ap-
proaches to nested NER, and present span-based approach of (Yu et al., 2020) and MRC-based
approach of (L1 et al., 2019) as two baselines with the highest performances. Similarly for
NEREL-BIO (Loukachevitch et al., 2023)), authors present MRC-based (L1 et al., 2019) and
second-best sequence learning approach (Shibuya and Hovy, 2020) as baselines. (Artemova
et al., 2022) report the results of RuUNNE-2022 shared task on NEREL, in which rule-based
method outperformed neural network-based approaches.

Recently, span-based methods became a popular line of research within nested NER. Method
of (Yu et al., 2020) was continuously improved by utilizing Triaffine mechanism (Yuan et al.,
2021)), boundary smoothing (Zhu and Li, 2022), and CNN (Yan et al., 2022). In this work, the
approach of (Yan et al., 2022) was chosen as a backbone nested NER model due to its high
performance, fast training and inference, and overall simplicity.

Most of the current approaches to flat and nested NER are limited to in-domain setting. Cross-
domain NER aims to generalize the model to more than one domain at once. First, this task was
approached as a supervised multi-task learning problem (Yang et al., 2017)), (Wang et al., 2018)),
(Wang et al., 2019).

To solve the problem of probable data scarcity in target domain, several different works pro-
pose low-resource approaches to cross-domain NER through learning general representations
of named entities (Liu et al., 2020), (Liu et al., 2021)), and through data augmentation (Chen et
al., 2021), (Wang et al., 2020), (Wang et al., 2021), (Yang et al., 2022).

Previous methods were designed and tested only for flat NER. The most recent update on
cross-domain NER was made by (Ming et al., 2022). They were the first to consider few-
shot nested NER setting by using BERT-multilingual encoder, Biaffine layer and contrastive
optimization module. They use FewNERD as source dataset, and they use GENIA, GermEval,
NEREL as target datasets. They achieve 33.71%, 39.56%, 44.47% F1 score in 1-shot setting,
and 46.06%, 47.07%, 58.95% F1 in 5-shot setting on each respective target dataset.

In this paper, we make an intuitive assumption that strong in-domain generalization properties
of the backbone model can help model achieve good cross-domain generalization per se. There-
fore, we propose a method for cross-domain nested NER which, in contrast to the approach of
(Ming et al., 2022), requires no fine-tuning on target domain data. The idea is embarrassingly
simple yet effective: to keep only common entity types between datasets, train backbone model
on source dataset and directly test it on target dataset. To the best of our knowledge, we are
the first to test cross-domain nested NER on NEREL and NEREL-BIO as respective source and
target datasets.

3 Method
3.1 Nested NER Method

To train a model, span-based method of (Yan et al., 2022) was followed:
* The input sentence of length n was encoded using the pre-trained language model.
* The encoded sentence X is then passed into two MLPs to obtain representations for the
start and end of spans. Both are then sent into multi-head Biaffine decoder (Yan et al.,
2022)), (Yu et al., 2020), (Dozat and Manning, 2016), (Vaswani et al., 2017).

R = MHBiaf fine(H,., Hy) (D

The result is a score matrix of dimension n X n X r, where r is the feature size.



* CNN block is applied several times to model local relations between spans:
R' = Conv2d(R) (2)
R" = GeLU(Layer Norm(R' + R)) (3)
* Predictions are obtained in the following way:
P = Sigmoid(Linear(R" + R)) 4)

Resulting P has dimension n X n X ¢, where t is the number of named entity categories.
* Loss is calculated as binary cross entropy:

L=— Y yylog(Py)+ (1 —yy)log(l - Py) (5
0<i,j<n
* When inference, the score for span (i, 7) is calculated as:
Py + P;
% (6)

* Finally. decoding process is carried out. First, spans with all their scores less than 0.5 are
discarded. Then, sorted spans are chosen in the descending score order. If the lower score
span “clashes” (Yu et al., 2020) with higher score span, former is dropped.
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Figure 1: Preprocessing pipeline

To solve the task of cross-domain NER between NEREL and NEREL-BIO, a check was
added to a preprocessing script, so that entity mention could be considered only if its type is
common between NEREL and NEREL-BIO.

Fig. (1| shows the process of modifying NEREL and NEREL-BIO for using in cross-domain
setting. In case of “DISO” entity type in NEREL-BIO, it was renamed to “DISEASE” to match
the NEREL annotation scheme. Preprocessed datasets with common label types were named
NEREL-C and NEREL-BIO-C.

4 Experiments and Results

4.1 Experiments Outline

Two types of experiments were conducted. First, CNN-NER was trained separately on NEREL
and NEREL-BIO to obtain reference results. These results were compared with the baselines.
Second, cross-domain method was tested: CNN-NER was trained only on NEREL-C and eval-
uated on both NEREL-C and NEREL-BIO-C. There is no comparison with the approach of
(Ming et al., 2022), since they did not publish the code of their implementation.



4.2 Evaluation Metrics

Micro F1 score was used as a metric. In this work, strict evaluation was used: prediction is
considered correct, if predicted span boundaries and label exactly match the ground truth.

4.3 Training Details

For CNN-NER backbone method, RuBERT-base (Kuratov and Arkhipov, 2019) was chosen
as a pre-trained encoder since datasets are in Russian. All CNN-NER model instances were
trained using AdamW optimizer with warmup-decay linear scheduler, training was done on
Nvidia Tesla P100 GPU.

Table 1: Hyperparameters used
Hyperparams NEREL NEREL-BIO NEREL-C

# Epoch 50 10 10
Learning rate Se-6 Te-6 Se-6
Batch size 4 4 4
Hidden size h 200 400 200
Feature size r 100 200 100

Table [I|shows CNN-NER hyperparameters chosen for each dataset. For each dataset, 10 and
50 epochs setting was tested, and the best one was selected. For most of the hyperparameters,
(Yan et al., 2022)) were followed to select the appropriate values. In case of overfitting, the best
epoch was chosen depending on dev F1 score.

4.4 Main Results

As mentioned in experimental setup, first experiment was done by training two models: one on
NEREL and one on NEREL-BIO, and then comparing the results with the baselines. RuBERT-
base is a default encoder for all methods which require it, and Micro F1 score is a default score
for all comparisons, if not specified otherwise.

Table 2: Performance on test sets for the usual training approach

Model F1 Precision Recall
NEREL
MRC (Li et al., 2019) 79.64 78.70 80.24
Biaffine (Yu et al., 2020) 76.38 81.92 71.54
Rule-based (Artemova et al., 2022) macro 81.1 - -
CNN-NER (Yan et al., 2022 86.05 84.78 87.35
NEREL-BIO

MRC (Li et al., 2019) 76.94 66.83 59.90
Second-best (Shibuya and Hovy, 2020) 74.10 75.28 72.98
CNN-NER (Yan et al., 2022 78.23 77.03 79.47

Table 3: Performance on test sets for the cross-domain approach
Model NEREL-C NEREL-BIO-C
F1 P R F1 P R
Cross-domain CNN-NER 89.23 87.45 91.09 | 63.55 78.05 53.59




Table [2] compares the training results between baselines chosen by (Loukachevitch et al.,
2021)) and backbone method used in this work. For NEREL, approach with the highest per-
formance from RuNNE shared task (Artemova et al., 2022)) is also listed. It can be seen that
for both NEREL and NEREL-BIO, CNN-NER (Yan et al., 2022) achieves better performance.
Therefore, reasonable decision was made to further use this approach for cross-domain setting.

In the second experiment, CNN-NER was trained and evaluated on NEREL-C. After that, the
same model instance was evaluated on NEREL-BIO-C without fine-tuning.

Table [3] shows the results of the cross-domain approach. It can be seen that there is a per-
formance drop (-14.68% F1), when comparing the performance of cross-domain method on
NEREL-BIO-C between the usual training approach on NEREL-BIO. As was mentioned be-
fore, there is no direct comparison with the method of (Ming et al., 2022)). However, their results
on NEREL as a target domain dataset were mentioned in the Related Work section.

5 Analysis

5.1 Datasets Examination

High percentage of matching tokens between source and target datasets can artificially improve
cross-domain model performance. Therefore, these statistics should be examined.
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Figure 2: Comparison of matching tokens percentage and F1 score

Fig. [2] represents the information about coinciding tokens and corresponding performance.
Each node represents a category. It can be seen that, apart from three outlying points, F1 score
for entity types does not depend on percentage of matching tokens, since there is no discernible
pattern which could prove the opposite. Therefore, quantity of similar tokens has none or very
small contribution to model performance.

5.2 Performance Breakdown

Table ] shows the comparison between ordinary training method on test set of NEREL-BIO and
cross-domain method on test set NEREL-BIO-C. Additionally, for each category, corresponding
count of occurrences in train sets of NEREL and NEREL-BIO is listed. We want to note that
there can be slight inaccuracy in scores due to a low number of counts in test set for some
categories.

For the cross-domain method, significant performance drop can be noticed on three cate-
gories, which were most affected by semantic shift. In common usage, semantic shift means
evolutionary change of the word meaning over time, but in context of this work it could mean
change of the word meaning over domain (Chen et al., 2018). For example, in source domain



Table 4: Performance breakdown on test sets for usual and cross-domain approaches

NEREL-BIO NEREL-BIO-C Difference Count (train set)
Cat. NEREL-

F1 Pre Rec F1 Pre Rec F1 Pre Rec | NEREL BIO
AGE 89.80 91.67 88.00 | 83.67 8542 82.00| -6.13 -6.25 -6.00 794 389
CITY 66.67 55.56 83.33 | 66.67 66.67 66.67 | 0.00 11.11 -16.66 1517 83
CTRY 92.21 9221 9221|7939 9630 6753 |-12.82 4.09 -24.68 2950 182
DATE 78.43 9195 68.38 | 7897 7931 7863 | 054 -12.64 10.25 3068 967
DIS 93.09 93.52 92.66 | 87.96 94.71 82.11 | -5.13 1.19 -10.55 322 9706
FAC 42,55 62.50 3226 | 0.00 0.00 0.00 | -42.55 -62.50 -32.26 491 151
LOC 21.05 80.00 12.12 | 78.26 75.00 81.82 | 57.21 -5.00 69.70 335 61
NUM 89.12 84.67 94.07 | 83.14 88.33 7852 | -5.98 3.66 -15.55 1162 3358
ORD 79.41 90.00 71.05 | 87.50 83.33 92.11 | 8.09 -6.67 21.06 637 873
ORG 82.05 87.67 77.11 | 66.67 86.54 5422 | -1538 -1.13 -22.89 4785 353
PERC 9250 9250 9250 | 81.82 75.00 90.00 | -10.68 -17.50 -2.50 95 1498
PERS 9098 88.55 93.55|26.03 86.36 1532 |-6495 -2.19 -78.23 6551 5787
PROD 40.00 60.00 30.00 | 11.11 6.45 40.00 | -28.89 -53.55 10.00 333 57
PROF 76.00 82.61 70.37 |90.20 9583 85.19 | 1420 13.22 14.82 5973 153
S_O_P 70.00 63.64 77.78 | 87.50 100.00 77.78 | 17.50 36.36  0.00 420 66
TIME 7143 6250 83.33 | 66.67 5556 8333 | 476 -694 0.00 218 107

dataset, NEREL (consequently, NEREL-C), “PERSON” usually represents proper nouns, €.g.
“David Rockefeller”, “Kevin Rudd”. On the other hand, in target domain dataset, NEREL-BIO
(hence, NEREL-BIO-C), “PERSON” is mainly a common noun, representing one person or
group of people, e.g. “patient”, “sick”, etc. Moreover, “FACILITY” category denotes even
more divergent concepts in both datasets. In NEREL, this label type mostly represents the
names of city facilities, e.g. “house 76B”, “St. Louis airport”. In NEREL-BIO, the same cat-
egory name refers to various objects and names within healthcare domain: breastfeeding tents,
hospital room names, etc. Similar events, but to a different extent may be described for the
other underperforming categories.

For “LOCATION”, “PROFESSION”, “STATE_OR_PROVINCE” categories, performance
increase can be explained by the fact that NEREL contains much more training data for these
categories than NEREL-BIO: 335 vs. 61, 5973 vs. 153, 420 vs. 66 instances respectively in
NEREL and NEREL-BIO for each corresponding category. When cross-domain model was
trained on NEREL-C, knowledge about such categories was transferred onto NEREL-BIO-C,
while in usual training method, model saw data from NEREL-BIO only. This aspect may affect
performance in some other categories.

Regarding the other categories, differences range considerably, in both negative and in posi-
tive directions. As was mentioned before, there is an overall -14.68 % micro F1 drop, which is
arguably not a large reduction, considering that there was no fine-tuning on NEREL-BIO-C in
cross-domain method.

6 Conclusion

This work explores a novel direction within Named Entity Recognition. A simple yet effective
way was proposed to solve the double issue of cross-domain nested NER. Our method keeps
only the common entity types between source and domain datasets, and utilizes generalization
capabilities of the span-based nested NER approach. Experiments on NEREL and NEREL-BIO
as source and target domain datasets show that our method achieves comparable performance to



the usual training approach without using target domain data for fine-tuning. There is no direct
comparison with the existing approach to cross-domain nested NER by (Ming et al., 2022),
since they did not publish the code of their implementation. We do not state that our research
is complete, since there is a vast possibility for improvement. For example, experimenting with
the set of categories to focus on some particular entity types, or adopting more sophisticated
methods such as contrastive learning to solve the category discrepancy problem between source
and target domain datasets can help achieve much better performance on this task.
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