
Sergey Vychegzhanin
Vyatka State University

Kirov, Russia
vychegzhaninsv@gmail.com

Anastasia Kotelnikova
Vyatka State University

Kirov, Russia
kotelnikova.av@gmail.com

Alexander Sergeev
Vyatka State University

Kirov, Russia
sergeev.alexander0@gmail.com

Evgeny Kotelnikov
Vyatka State University

Kirov, Russia
kotelnikov.ev@gmail.com

Abstract

Controllable story generation towards keywords or key phrases is one of the purposes of using language models.
Recent work has shown that various decoding strategies prove to be effective in achieving a high level of language
control. Such strategies require less computational resources compared to approaches based on fine-tuning pre-trained
language models. The paper proposes and investigates the method MaxProb of controllable story generation in Rus-
sian, which works at the decoding stage in the process of text generation. The method uses a generative language
model to estimate the probability of its tokens in order to shift the content of the text towards the guide phrase. The
idea of the method is to generate a set of different small sequences of tokens from the language model vocabulary,
estimate the probability of following the guide phrase after each sequence, and choose the most probable sequence.
The method allows evaluating the consistency of the token sequence for the transition from the prompt to the guide
phrase. The study was carried out using the Russian-language corpus of stories with extracted events that make up
the plot of the story. Experiments have shown the effectiveness of the proposed method for automatically creating
stories from a set of plot phrases.

Keywords: text generation; decoding strategy; GPT
DOI: 10.28995/2075-7182-2023-22-539-553

MaxProb: Управляемая генерация историй
на основе сюжетных линий

Вычегжанин С. В.
Вятский государственный

университет
Киров, Россия

vychegzhaninsv@gmail.com

Котельникова А. В.
Вятский государственный

университет
Киров, Россия

kotelnikova.av@gmail.com

Сергеев А. В.
Вятский государственный

университет
Киров, Россия

sergeev.alexander0@gmail.com

Котельников Е. В.
Вятский государственный

университет
Киров, Россия

kotelnikov.ev@gmail.com

Аннотация

Управляемая генерация историй по направлению к ключевым словам или выражениям является одной из
целей использования языковых моделей. Недавние работы показали, что использование различных стратегий
декодирования является эффективным подходом для достижения высокого уровня управления языком. Такие
стратегии требуют меньше вычислительных ресурсов по сравнению с подходами, основанными на тонкой
настройке предварительно обученных языковых моделей. В статье предложен и исследован метод управляе-
мой генерации историй на русском языке MaxProb, работающий на этапе декодирования в процессе генерации

1

Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2023”

June 14–16, 2023

MaxProb: Controllable Story Generation from Storyline

текста. Метод основан на использовании генеративной языковой модели для оценки вероятности ее токенов
с целью смещения содержания текста к направляющему выражению. Идея метода заключается в генерации
множества различных небольших по длине последовательностей токенов из словаря языковой модели, оценке
вероятности следования направляющей фразы после каждой последовательности, и выборе наиболее вероят-
ной последовательности. Метод позволяет оценить логичность последовательности токенов для перехода от
затравки к направляющему выражению. Исследование проводились с использованием русскоязычного кор-
пуса историй с выделенными событиями, составляющими сюжет истории. Эксперименты показали эффек-
тивность предлагаемого метода для автоматического создания историй из набора сюжетных фраз.

Ключевые слова: генерация текстов; стратегия декодирования; GPT

1 Introduction

Natural language generation (NLG) is one of the important areas of computational linguistics. It aims
to produce plausible and readable text in a human language. In recent years, the use of large-scale pre-
trained language models (PLMs), in particular transformer-based PLMs [21], has shown promising re-
sults, allowing generating more diverse and fluent texts. Modern neural network models such as GPT-3
[2] can create texts that are difficult to distinguish from texts written by a human.

NLG technologies are crucial in many applications such as dialogue and question-answering systems,
story generation, advertising, marketing, product and service reviews.

Controllable Text Generation is a problem actively explored in NLG. This is the task of generating
texts that meet certain control constraints set by a human [16]. Sentiment, keywords, events, etc. can be
considered as such constraints. For example, when generating a story, it is important to control the story-
line and the ending.

There are two types of control over text generation models: soft and hard control. The aim of soft
control is, e.g., to provide the desired sentiment or topic of the generated text. Hard control requires
ensuring that the text contains explicit constraints, e.g., certain keywords. Figure 1 shows an example
of hard controllable text generation, where the story is generated according to the keywords provided
by the storyline and the order in which they appear [25].

Storyline needed → money → computer → bought → happy

Generated story
John needed a computer for his birthday. He worked hard to earn
money. John was able to buy his computer. He went to the store
and bought a computer. John was happy with his new computer.

Figure 1: Example of controllable story generation with hard control

Many existing controllable generation methods [5], [8], [25] require the creation of training corpora
and the implementation of a training procedure that is labor intensive and time consuming. This paper
overcomes this problem by developing a plug-and-play method applicable to any large-scale PLM. Cur-
rently, there are not enough studies on the controllable text generation in Russian, so the proposed
method is tested on Russian language models and text corpora.

The idea of the method is to generate a set of short sequences of words that provide a coherent tran-
sition from the prompt to the guide phrase, and then estimate the probability of following the guide
phrase after each generated sequence and choose the most probable sequence. This method is plug-and-
play, i.e. it can be used with any autoregressive model. The experiments carried out on generating stories
from a set of events that make up the plot of a story prove the effectiveness of the proposed method for
creating texts from a set of plot phrases.

The contribution of the paper is as follows:
• we offer MaxProb – a method of controllable text generation that generates stories in accordance

with a user-specified sequence of guide phrases that make up the plot of the story;
• we apply the method to the Russian language;
• we form a text corpus containing stories with extracted storylines;
• we experiment with story generation to confirm the effectiveness of the proposed method.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

2

2 Previous work

This section discusses the existing methods of controllable text generation that can be applied to the
problem of story generation, which is of primary research interest. Automated story generation is the
problem of mechanically selecting a sequence of events or actions that meet a set of criteria and can be
told as a story [11]. Each story has a story world, interacting characters, and objects. The complexity of
the story generation task is to generate a coherent and fluent story that is much longer than the user-
specified prompt.

Controllable generation methods can be classified into three categories [26]: fine-tuning, retraining
or refactoring, post-processing. Fine-tuning PLMs on a specialized data set is the main way to interact
with models. Methods of this type fine-tune some or all of the model parameters to create texts that
satisfy certain constraints. Early work on controllable story generation used convolutional and recurrent
neural networks. Fan et al. [6] used a two-stage hierarchical approach. At the first stage, using the con-
volutional neural network, a premise, which determined the structure of the story, was generated. Then
the premise was converted into a text passage using the seq2seq model. Yao et al. [25] used the RAKE
algorithm [18] to build a storyline for each story from the corpus at the training stage using the most
important words. After the storyline was generated, the seq2seq model converted it into text.

Reinforcement learning can be used for controllable story generation. For example, Tambwekar et al.
[20] developed a reward-shaping technique that produces intermediate rewards at all different time-
steps, which are then back-propagated into a language model in order to guide the generation of plot
points towards a given goal.

Later, pre-trained language models based on the Transformer architecture began to be used for con-
trollable generation. The prompt-based approach became widespread. Li and Liang [12] proposed a
method called “prefix tuning” that freezes the parameters of the PLM and performs error backpropaga-
tion to optimize a small continuous task-specific vector called “prefix”. A similar P-tuning method [10]
differs from prefix tuning in that it does not place a prompt with the “prefix” in the input, but constructs
a suitable template composed of the continuous virtual token, which is obtained through gradient de-
scent.

Retraining or refactoring involves changing the architecture of the language model or retraining a
model from scratch. This approach is limited by the insufficient amount of labeled data and the high
consumption of computing resources. One of the first models in this direction was CTRL [8]. The model
was trained on a set of control codes. Zhang et al. [27] proposed POINTER, an insertion-based method
for hard-constrained text generation, which involves preserving of specific words.

Cho et al. [4] proposed Story Control via Supervised Contrastive learning model to create a story
conditioned on genre. The model learns conditional probability distribution by supervised contrastive
objective, combined with log-likelihood objective.

Methods based only on using a decoder are called post-processing. Such methods require less com-
putational resources. A representative of this group of methods is PPLM [Dathathri et al., 2020], which
first trains an attribute discriminant model and then uses it to guide language model to generate the text
with corresponding topic or sentiment. This group also includes the Keyword2Text method [15], which
can be applied to an existing autoregressive language model without additional training. The idea of the
method is to shift the output distribution of the language generation model to the semantic space of a
given guide word in the word2vec or GloVe vector space. A similar idea is used in [22], but the difference
is that the score function of the autoregressive language model is modified with the score function of
another language model from the family of autoencoding models rather than with the cosine similarity
to the target keyword.

Yang et al. [24] developed the Re3 framework to automatically generate longer stories of over two
thousand words. Re3 first creates a structured plan, setting and characters by prompting GPT-3 with a
premise. Then Re3 injects contextual information from both the plan and current story state into new
GPT-3 prompt to generate new story passages.

In this paper, we propose a post-processing method that implements a decoding strategy based on
heuristics. The difference from previous works [15], [22] lies in the fact that at each generation step for
small sequences of tokens, the probability of following the guide phrase is estimated. The method is
based on the idea that choosing a sequence of tokens, after which the probability of following the guide
phrase is maximum, will induce the model to generate text, shifting its content to the guide phrase.

3

MaxProb: Controllable Story Generation from Storyline

3 Controllable text generation

In this paper, we consider conditional probabilistic models for which the probability of the output text
𝑋𝑋𝑋𝑋 = {𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛} can be factorized by tokens:

𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋) = �𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑥𝑥𝑥𝑥<𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

, (1)

where 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 denotes the i-th output token, and 𝑥𝑥𝑥𝑥<𝑖𝑖𝑖𝑖 denotes previous tokens 𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1.
In accordance with formula (1), the goal of conditional text generation can be formulated as follows:

𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋|𝐶𝐶𝐶𝐶) = �𝑃𝑃𝑃𝑃(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖|𝑥𝑥𝑥𝑥<𝑖𝑖𝑖𝑖 ,𝐶𝐶𝐶𝐶)
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

, (2)

where 𝐶𝐶𝐶𝐶 denotes the control conditions and 𝑋𝑋𝑋𝑋 is the generated text, which complies with the control
conditions.

While generating, sequences of natural language units (symbols, words, or sentences) are decoded
from the probability distribution 𝑃𝑃𝑃𝑃. The decoding strategy plays an important role. At each time step, it
selects tokens from the probability distribution over a model vocabulary. Beam search [14] and nucleus
sampling [7] are examples of known decoding strategies.

Generative language models such as GPT learn to predict the next token in a given sequence of tokens.
Text generation is a natural application for such models. However, when predicting the next token of a
sequence, they are not able to take into account the context following it, which is supposed to be the
content of the generated text.

In this study, we propose the MaxProb method, which at each generation step determines the most
probable sequence of tokens for logically linking the prompt and the guide phrase that should be used
in the text. The idea of the method is based on using intrinsic knowledge of a pre-trained language model
to evaluate the token sequences and select the appropriate sequence for a coherent transition to the guide
phrase. The proposed method can be applied to any autoregressive language model.

Let us consider the sequence 𝑋𝑋𝑋𝑋 = {𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+1, … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘 , 𝑡𝑡𝑡𝑡, … , 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚}. For a given prompt
 𝑋𝑋𝑋𝑋1:𝑖𝑖𝑖𝑖−1 = {𝑥𝑥𝑥𝑥1, … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖−1} and a guide phrase 𝑇𝑇𝑇𝑇 = {𝑡𝑡𝑡𝑡1, … , 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚} theoretically it is possible to find the con-
necting sequence 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘 = {𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+1, … , 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘} using exhaustive search of tokens from the model vocab-
ulary. However, such search has an exponential dependence on the length of the connecting sequence
and is not applicable in practice. Therefore, in order to reduce the number of variants we propose a
heuristic technique for generating and evaluating connecting sequences (Fig. 2).

x1

Prompt

xi+1,1xi,1 ... xi+k,1

xi+1,rxi,r ... xi+k,r

... xi-1 t1

Guide phrase

... tm

xi+1,2xi,2 ... xi+k,2

Connecting sequences

P1

P2

Pr=P(T|X≤ i+k,r)

......

max(P1,…,Pr)=P2
Figure 2: MaxProb method scheme

First, as continuations of the prompt 𝑋𝑋𝑋𝑋1:𝑖𝑖𝑖𝑖−1, 𝑟𝑟𝑟𝑟 different sequences of tokens of length 𝑘𝑘𝑘𝑘 + 1 are gen-
erated using some decoding strategy. Next, for each of the 𝑟𝑟𝑟𝑟 sequences, the probability of following the
guide phrase 𝑇𝑇𝑇𝑇 after it is determined by the formula:

𝑃𝑃𝑃𝑃(𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘|𝑋𝑋𝑋𝑋1:𝑖𝑖𝑖𝑖−1,𝑇𝑇𝑇𝑇) = 𝑃𝑃𝑃𝑃(𝑇𝑇𝑇𝑇|𝑋𝑋𝑋𝑋≤𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘) = �𝑃𝑃𝑃𝑃�𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗|𝑡𝑡𝑡𝑡<𝑗𝑗𝑗𝑗 ,𝑋𝑋𝑋𝑋≤𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘�
𝑚𝑚𝑚𝑚

𝑗𝑗𝑗𝑗=1

. (3)

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

4

Further, at the current generation step, a sequence is selected for which the probability (3) is maxi-
mum, and the sequences of length 𝑘𝑘𝑘𝑘 + 1 are repeatedly generated. In order to fulfill the condition of the
explicit presence of the guide phrase in the text, after the generation of a given number of tokens is
completed, this phrase can be inserted in the position in the text where it had the maximum probability
for the entire generation time. After the phrase is inserted, the generation can continue towards the next
guide phrase.

Formula (3) makes it possible to estimate the probability of following the guiding phrase for each
connecting sequence of tokens, but does not evaluate their semantic similarity. There may be cases where
semantic similarity is more important than the likelihood of following the guide phrase. To assess the
similarity of the connecting sequence and the guide phrase, it is proposed to use the Jaccard coefficient:

𝐾𝐾𝐾𝐾𝐽𝐽𝐽𝐽 =
𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶
, (4)

where 𝐴𝐴𝐴𝐴 is the set of words in normal form from the prompt, 𝐵𝐵𝐵𝐵 is the set of words in normal form from
the guide phrase, 𝐶𝐶𝐶𝐶 is the set of common words for the prompt and the guide phrase.

Taking into account formulas (3) and (4) for connecting sequences, the average score, which estab-
lishes a balance between the two measures, can be determined by the formula:

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑘𝑘𝑘𝑘 = 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑤𝑤𝑤𝑤𝐽𝐽𝐽𝐽𝐾𝐾𝐾𝐾𝐽𝐽𝐽𝐽, (5)

where 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑤𝑤𝑤𝑤𝐽𝐽𝐽𝐽 are weight coefficients, 𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the normalized probability of following the guide
phrase.

Thus, at each time step, the proposed method allows selecting the most logical sequence of tokens for
linking the prompt and the guide phrase, based on the knowledge of the generative model itself.

As an example of how the method works, let us consider a text at some i-th generation step and a
guide phrase separated by a sequence of unknown tokens, for example, of length 3 (Fig. 3). In the figure,
the prompt for the autoregressive model is highlighted in blue, and the guide phrase is highlighted in
orange. The connecting sequence is marked with labels <x1><x2><x3>.

Однажды в лесу, около речки, сидел мальчик с бабушкой. Вдруг в это время из-за
<x1><x2><x3> волк напал на ребенка

Once in the forest, near the river, a boy was sitting with his grandmother. Suddenly, at this time,
<x1><x2><x3> the wolf attacked the child

 Score P KJ <x1><x2><x3>, Russian <x1><x2><x3>, English

0.944 3.20E-11 0.200 кустов вышли волки wolves came out from behind the
bushes

0.226 6.50E-12 0.200 поворота вышел волк, a wolf came out from around the
corner,

0.105 1.90E-13 0.100 дерева на поляну from behind a tree to a clearing
0.100 4.60E-18 0.100 дерева выскочило from behind a tree jumped out

0.100 9.30E-19 0.100 деревьев вышел лев, a lion came out from behind the
trees,

0.100 5.70E-22 0.100 деревьев вышли три from behind a tree appeared three

0.100 3.00E-24 0.100
деревьев показалась
большая from behind a tree appeared a large

0.052 2.80E-13 0.100 деревьев выскочили from behind the trees jumped out

0.048 1.70E-13 0.100 поворота леса вышел from around the corner of the forest
came out

0.044 9.40E-15 0.100
поворота речки выско-
чил

out of the turn of the river, jumped
out

Figure 3: Example of prompt and connecting sequences at the i-th generation step

5

MaxProb: Controllable Story Generation from Storyline

The prompt is an input of the autoregressive model. With some decoding strategy, such as top-k sam-
pling, 𝑟𝑟𝑟𝑟 different sequences of 3 tokens <x1><x2><x3> are generated. For them, the probabilities of fol-
lowing the guide phrase P and the Jaccard coefficients KJ are calculated. The calculated values are av-
eraged by formula (5). The sequences of tokens are sorted in descending order of Score, and the sequence
with the highest value of the average score is selected. The selected sequence is attached to the prompt,
and the generation process continues until the specified number of tokens is generated.

4 Text corpus

To conduct experiments, a text corpus1 was formed from fairy tales in Russian with extracted storylines.
The corpus is made up of fairy tales placed on nukadeti.ru2 with a length of no more than 5000 charac-
ters. In total, the training corpus contains 562 fairy tales.

In each fairy tale, plot phrases were singled out, i.e. phrases that determine the main events in the
story, the storyline. To do this, first, in each fairy tale keywords and phrases were selected, using the
methods yake3 [3], rakun4, frake5, textrank6, rutermextract7, keybert8 methods. Each method selected
15 keywords and phrases. The yake and rutermextract methods showed the best quality, so their results
were used in the next stage to compose plot phrases.

The yake and rutermextract methods were selected out of six methods manually. The main problems
with other methods were the following. The top keywords and phrases of the rakun and the keybert were
very often parts of each other, they intersected, i.e. were parts of one longer phrase. So, the number of
sentences with these selected keywords was very low and the plot could not be built out of them.

The frake’s results often contained just single words and it was very difficult to understand from
which sentences they were selected (if they repeated several times).

The problem of textrank was that it didn’t pay attention to sentence segmentation – many selected
phrases were parts of two neighbor sentences.

Further, plot phrases were extracted from fairy tales according to the following algorithm:
1. Events were found. Events are syntactically related triples <object, action, object> (for example,

“старуха, испекла, колобок” – “old woman, baked, bun”). The objects were selected from a set of
keywords, and the actions was determined from the parse tree as nodes, syntactically associated with
the objects. The stanza library9 was used to make the syntax parsing of the sentences.

2. The most important events found were selected from the found events. Each selected event was
assigned a weight obtained by summing the weights of the keywords extracted by the yake and rutermex-
tract methods separately.

3. From the selected important events, a plot phrase was formed, determined by a 4-element set
(𝑆𝑆𝑆𝑆1, 𝑣𝑣𝑣𝑣, 𝑆𝑆𝑆𝑆2,𝑚𝑚𝑚𝑚), where 𝑣𝑣𝑣𝑣 is a verb, 𝑆𝑆𝑆𝑆 are objects related to the verb, 𝑚𝑚𝑚𝑚 is a modifier, prepositional object,
or indirect object. Prepositions are possible before 𝑆𝑆𝑆𝑆 and 𝑚𝑚𝑚𝑚. An example of an event: “grooves in the
forest spilled into whole streams”, where “spilled” is 𝑣𝑣𝑣𝑣, “grooves” and “streams” are 𝑆𝑆𝑆𝑆, “forest” is 𝑚𝑚𝑚𝑚
(“канавки в лесу разлились в целые ручьи”, 𝑣𝑣𝑣𝑣 – “разлились”, о – “канавки”, “целые ручьи”, 𝑚𝑚𝑚𝑚 –
“лесу”).

For each of the two methods for extracting keywords, their own plot phrases were formed, the number
of which, depending on the fairy tale, varied from 0 to 26. Figure 4 shows the distribution of the number
of plot phrases extracted using the yake and rutermextract methods.

1 https://github.com/icecreamz/MaxProb.
2 https://nukadeti.ru.
3 https://github.com/LIAAD/yake.
4 https://github.com/SkBlaz/rakun.
5 https://github.com/cominsys/FRAKE.
6 https://github.com/JRC1995/TextRank-Keyword-Extraction.
7 https://github.com/igor-shevchenko/rutermextract.
8 https://github.com/MaartenGr/KeyBERT.
9 https://stanfordnlp.github.io/stanza.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

6

Figure 4: Distribution of the number of plot phrases

The number of sentences in fairy tales varied from 4 to 139. The distribution of the number of sen-
tences is shown in Fig. 5.

Figure 5: Number of sentences in fairy tales

Since the number of resulting plot phrases should correlate with the length of the tale, the plot was
assembled from the selected phrases according to the following algorithm:

1. The minimum number of phrases in the plot is 1, the maximum is the rounded-up value of the log-
rhyme to base 2 of the number of sentences 𝑛𝑛𝑛𝑛 in the text: ⌈𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙2𝑛𝑛𝑛𝑛⌉.

2. If the yake method returned the number of plot phrases in the above range, these phrases were taken
in order as a plot.

3. If the yake method produced fewer plot phrases, and the rutermextract method yielded enough,
then the rutermextract phrases were taken in order as a plot.

4. If both methods returned the number of phrases less than the minimum value, their results were
combined without repetitions in the order of the sentences in the text.

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
um

be
r o

f f
ai

ry
 ta

le
s

Number of plot phrases

yake rutermextract

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160

N
um

be
r o

f f
ai

ry
 ta

le
s

Number of sentences

7

MaxProb: Controllable Story Generation from Storyline

5. If the yake method produced more plot phrases than the maximum allowable in accordance with
point 1, then a part of the fragments with maximum weights was taken for the required amount.

Table 1 shows the distribution of the number of phrases in the plot in the training corpus. The first
column contains the number of phrases in the plot, the second – the number of fairy tales with such a
number of phrases, the third – the share of the total number of fairy tales in the training corpus, i.e., from
562 fairy tales.

A test corpus of 25 plots was also formed. The distribution by the number of plot phrases in the test
corpus is proportional to the distribution in the training corpus and is given in the fourth column of
Table 1.

Plot phrases # Fairy tales
in the training corpus

Share of the total
number of fairy tales,

%

Fairy tales
in the test corpus

1 31 5.46 1
2 48 8.45 2
3 53 9.33 2
4 56 9.86 3
5 107 18.84 5
6 185 32.57 8
7 80 14.08 4
8 2 0.35 0

Table 1: Distribution of the number of phrases in the plot

Table 2 shows statistics on the number of tokens received using the ruGPT-3 Large tokenizer in fairy
tales of training corpus, depending on the number of plot phrases.

Plot phrases Minimum number
of tokens

Maximum number
of tokens

Average number
of tokens

1 28 900 230.9
2 85 400 238.9
3 115 1,015 344.3
4 128 752 308.9
5 212 950 476.4
6 406 1,283 796.0
7 757 1,503 1,150.1
8 1,555 1,897 1,726.0

Table 2: Number of tokens

5 Experimental Setup

Keywords used in plot events were extracted from texts using the yake and rutemextract libraries. The
initial word forms for calculating the Jaccard coefficient were determined using the pymorphy2 library
[9]. Text generation experiments were carried out using the ruGPT-3 Large10 language model (760 mil-
lion parameters), which is the Russian-language version of the GPT-2 model [17].

In the experiments, fairy tales were generated according to a given sequence of events that determines
the plot of the fairy tale. The top-k sampling decoding strategy with parameter 𝑘𝑘𝑘𝑘 = 10 was used as a
decoding strategy in MaxProb to obtain connecting sequences of tokens.

The values of the weight coefficients in formula (5) were determined empirically based on the analysis
of the generated connecting sequences. The coefficients took the values 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.9 and 𝑤𝑤𝑤𝑤𝐽𝐽𝐽𝐽 = 0.1. The
probability of following the guide phrase turned out to be more significant, and due to the 𝑤𝑤𝑤𝑤𝐽𝐽𝐽𝐽 coefficient,
the connecting sequence that was closest in content to the guide phrase was ranked first.

10 https://huggingface.co/sberbank-ai/rugpt3large_based_on_gpt2.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

8

The length of connecting sequences was 3 tokens. Experiments were also carried out for windows
ranging in size from 1 to 15 tokens. According to the results of the experiments, a small window of
connecting sequences had a better effect on shifting the content of the generated text towards the plot
phrase than a large window. With a large window size, suitable short sequences of words, most likely
followed by a guide phrase, could be missed, and as a result, the content of the generated text deviated
significantly from the content of the guide phrase.

The maximum length of the generated fairy tale (in tokens) depended on the number of plot phrases
and was equal to the average number + 10% of the tokens (see Table 2).

The proposed method was compared with three methods of controllable text generation:
1. Inserting key phrases in a prompt (PromptLearn).
When conducting experiments using the PromptLearn method, the ruGPT-3 Large model was fine-

tuned with 80% of the tales from the training corpus for three epochs. The prompt with size up to 1024
tokens was used as input data for the model:

“Plot: {plot phrase 1}, {plot phrase 2}, …, {plot phrase n}.\n

Text: {the text of fairy tale}”

For each tale, the number of plot phrases ranged from 1 to 8. To generate fairy tales, sampling was used
with parameters 𝑝𝑝𝑝𝑝 = 0.95 and 𝑘𝑘𝑘𝑘 = 50. The length of the generated fairy tale was chosen similarly to
MaxProb.

2. Few-shot learning (FewShotLearn).
The ruGPT-3 Large model was also used to apply the FewShotLearn method. The prompt was used

as input for the model:

“Compose text with keywords:\n
Plot: {plot phrase 1}, {plot phrase 2}, …, {plot phrase n}.\n

Text: {the text of fairy tale} ###
Plot: {plot phrase 1}, {plot phrase 2}, …, {plot phrase n}.\n

Text: {the text of fairy tale}”

The number of fairy tales input to the model depended on the estimated maximum length of the gen-

erated text so that the total input sequence fit into 2048 tokens allowed for the model. The range of the
number of input training examples is from 1 to 5, most often 3. When generating texts, the same param-
eters as for PromptLearn were used. The length of the generated fairy tale was chosen similarly to Max-
Prob.

3. Constrained beam search (ConstrainedBS).
ConstrainedBS was used as the baseline of controlled generation. Plot phrases were tokenized and

used as a list of restrictions. The generation was carried out using the ruGPT-3 Large model. The prompt
“Однажды” (“Once”) was used as an input of the model. The number of beams varied from 7 to 10 to
generate different stories. A prohibition on the repetition of 3-grams was also established. The length of
the generated fairy tale was chosen similarly to MaxProb.

The quality of the generated texts was evaluated using automatic and human-centric evaluation meth-
ods. Four measures were used for automatic evaluation [13], [23], [28]:

‒ perplexity (PPL) – is a metric to measure how well the language probability model predicts a
sample. It is usually calculated as the exponential mean of the negative log-probability per token
in the language model. We calculated perplexity using the ruGPT-3 Medium11 language model
(350 million parameters);

‒ repetition (Rep) evaluates the proportion of repeated 4-grams in the text, where the tokens be-
long to the vocabulary of the ruGPT-3 Large model;

‒ Word Inclusion Coverage (Cov) shows the percentage of plot words included in the generated
text. Plot and generated words are lemmatized;

‒ self-BLEU-5 evaluates the syntactic diversity of a given set of texts. It is defined as the average
overlap between all generated texts.

11 https://huggingface.co/sberbank-ai/rugpt3medium_based_on_gpt2.

9

MaxProb: Controllable Story Generation from Storyline

Three measures were used for human-centric evaluation:
‒ coherence – whether the story is consistent in terms of causal relationships in the context;
‒ relevance – the story corresponds to the plot, the events in the story unfold in accordance with

the storyline;
‒ interestingness – how the user likes the story, whether it is interesting.

6 Results and discussion

Table 3 shows the statistical characteristics of the generated texts, calculated using the GEM-metrics
library12:

‒ Avg length – the average length of texts (in words);
‒ Vocab size – the number of different words;
‒ Distinct-n – the ratio of distinct n-grams over the total number of n-grams.

Generation methods Avg length Vocab size Distinct-1 Distinct-2 Distinct-3
ConstrainedBS 447 3,149 0.11 0.49 0.85
FewShotLearn 158 1,998 0.19 0.57 0.77
PromptLearn 430 3,608 0.13 0.50 0.77
MaxProb 497 3,015 0.10 0.41 0.70

Table 3: Statistical characteristics of generated texts

Analyzing Table 3, you can see that the FewShotLearn method, on average, generated fairy tales 3
times shorter than the other three methods. It should be noted that when generating longer tales, the first
tale was often interrupted and a new tale began.

Table 4 shows the average values of perplexity, repetition, word inclusion coverage, and self-BLEU-5
measures calculated for fairy tales generated from 25 storylines of test corpus. For each storyline, two
fairy tales were generated. A total of 50 tales were generated by each method.

Additionally, the scores were also calculated for the base model ruGPT-3 Large. The ruGPT-3 Large
model was preliminarily fine-tuned on the training corpus of fairy tales with the addition of the prefix
“Текст: ” (“Text: ”) to the beginning of each fairy tale, which was then used as a prompt during gener-
ation. The experiments used the strategy of decoding top-k sampling with the parameter 𝑘𝑘𝑘𝑘 = 10.

Generation methods ↓ PPL ± Std ↓ Rep, % ↑ Cov, % ↓ Self-BLEU-5
ruGPT-3 5.3 ± 1.5 26.43 20.07 0.028
ConstrainedBS 6.8 ± 2.5 0.61 80.86 0.094
FewShotLearn 9.9 ± 6.1 16.40 43.49 0.014
PromptLearn 6.8 ± 1.7 14.82 71.32 0.032
MaxProb 7.0 ± 1.4 18.33 99.54 0.063

Table 4: Automatic quality scores for generation methods

The values of the Cov measure in Table 4 show that the MaxProb method ensures that more than 99%
of the words from the storyline events appear in the text. The texts generated by this method met the
requirement of matching the storyline to the best extent. The smallest number of words from the story-
line appeared in the texts generated by the FewShotLearn method and is 43.49%. In such texts, the
required characters and events were rare. This is largely due to the relatively short length of the generated
tales.

The values of the Rep measure for the FewShotLearn, PromptLearn, and MaxProb methods are quite
close to each other and vary from 14.82% to 18.33%. The ConstrainedBS method has a Rep value close
to zero as a result of setting the prohibition on the repetition of 3-grams, otherwise the generation was
often reduced to repetitions of words. Repeatability values do not suggest a significant superiority of

12 https://github.com/GEM-benchmark/GEM-metrics.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

10

one method over others. Notably, controllable generation methods reduced the repeatability value com-
pared to the ruGPT-3 base model.

The lowest PPL value among controllable generation methods was obtained for PromptLearn and
ConstrainedBS and is 6.8. The MaxProb method showed a 0.2 higher average PPL, but it has a lower
standard deviation, i.e. provides a more stable level of perplexity. For the FewShotLearn method, per-
plexity and standard deviation were the highest. It is known, that a lower perplexity value corresponds
to a better model. The increase in perplexity compared to the base ruGPT-3 model indicates that the
control process is “unnatural” for the model. This causes the model to be more "surprised" by the tokens
observed in the text.

The self-BLEU-5 measure has the lowest value for FewShotLearn. The texts generated by this method
turned out to be the most syntactically diverse. The variety of PromptLearn is at the level of the basic
ruGPT-3 model. The least varied texts are for the ConstrainedBS method.

To calculate human-centric measures, the generated texts were evaluated by three annotators for co-
herence, relevance, and interestingness. The assessment was carried out on a 5-point Likert scale (1 –
the worst, 5 – the best). For all the methods, only the generated sequence was evaluated, without prompt.
Inter-annotator agreement was measured using the Spearman coefficient [1]. The value of this coeffi-
cient for the “coherence” criterion was 0.54, “relevance” – 0.87, “interestingness” – 0.59. The values,
which are greater than 0.5 indicate high annotator agreement [19].

Table 5 shows the average scores of coherence, relevance and interestingness.

Generation methods ↑ Coherence ↑ Relevance ↑ Interestingness
ConstrainedBS 1.65 2.91 1.56
FewShotLearn 2.23 1.63 2.25
PromptLearn 2.62 2.23 2.82
MaxProb 2.20 4.89 2.74

Table 5: Human-centric quality scores for generation methods

The coherence scores for all methods turned out to be low, less than 3 points. The low coherence is
due to the quality of the ruGPT-3 base model, which was used in the experiments. The PromptLearn
method turned out to be the best in terms of coherence, the MaxProb method more often violated the
coherence, and ConstrainedBS generated practically incoherent texts. However, MaxProb almost always
ensured that all events from the storyline appeared in the text, as evidenced by a high relevance score.
Despite the lowest coherence, the texts with MaxProb were slightly less interesting than with the
PromptLearn method, but were more interesting than with FewShotLearn.

Figure 6 shows the parallel coordinates visualization of all calculated measures.

Figure 6: The parallel coordinates visualization of the measures

11

MaxProb: Controllable Story Generation from Storyline

Let us give a specific example of the MaxProb method (Fig. 7). For the guide phrase “the cat ate sour
cream” (“кот съел сметану”) for some i-th step, the text “An old woman had a cat, whom she loved
very much and called: Ko-ko-ko. The cat loved” (“У одной старушки был кот, которого она очень
любила и которого звала: Ко-ко-ко. Кот очень любил”). At the i-th step, using the decoding strategy
top-k sampling, the connecting sequences of three tokens were obtained, shown in Fig. 7. For each
sequence, the probabilities of following the guide phrase P by formula (3), the Jaccard coefficients KJ
by formula (4) and the average values of Score by formula (5) are calculated. According to the results
of the i-th step, the sequence “milk with bread,” (“молоко с хлебом,”) was chosen, which has the highest
average Score.

У одной старушки был кот, которого она очень любила и которого звала: Ко-ко-ко. Кот очень
любил <x1><x2><x3> кот съел сметану

An old woman had a cat, whom she loved very much and called: Ko-ko-ko. The cat loved
<x1><x2><x3> the cat ate sour cream

 Score P KJ <x1><x2><x3>, Russian <x1><x2><x3>, English

0.900 2.50E-10 0.111 молоко с хлебом, milk with bread,
0.121 5.90E-12 0.143 старушку, old woman,
0.113 3.60E-12 0.143 , чтобы его , to be
0.105 1.30E-12 0.143 свою кошку и his cat and
0.104 1.20E-12 0.143 ее, да her, yes
0.102 6.60E-13 0.143 ее и не her and not
0.101 1.60E-13 0.143 , когда его , when he
0.100 6.40E-15 0.143 ее, Она her, She
0.100 1.40E-15 0.143 эту старушку this old woman
0.066 6.20E-12 0.125 молоко, и, milk, and,

Figure 7: Connecting sequences and their scores on the i-th step of generation

Table 6 shows the connecting sequences for steps 𝑖𝑖𝑖𝑖 + 1 through 𝑖𝑖𝑖𝑖 + 5. The sequences that received
the highest Score value are highlighted in blue at each step. These sequences were chosen as the most
probable ones and added to the prompt.

№ Step 𝑖𝑖𝑖𝑖 + 1 Step 𝑖𝑖𝑖𝑖 + 2 Step 𝑖𝑖𝑖𝑖 + 3 Step 𝑖𝑖𝑖𝑖 + 4 Step 𝑖𝑖𝑖𝑖 + 5

1 а еще больше - сметану . И вот однажды кот
съел всю сметану

2 и, когда любил сме-
тану, . А еще однажды, когда сметану и

3 а хлеб - со сметаной с молоком. однажды вече-
ром кошка сметаны,

4 а больше всего ел сметану, , но молоко однажды утром
старушка

столько сме-
таны,

5 поэтому, как - с молоком, , и поэтому он как-то все сметанное

6 но не любил, с молоком, , поэтому каж-
дый

он любил сме-
тану все сметаны

7 и поэтому он любил, когда , которая была он, чтобы все молоко,
8 но он не со сливочным и хлеб. , когда он всё молоко,

9 и если молоко с капустой, . Поэтому ба-
бушка , однажды кот всё, что

10 но молока в с сыром, . Кот ел , как-то целый хлеб и

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

12

№ Step 𝑖𝑖𝑖𝑖 + 1 Step 𝑖𝑖𝑖𝑖 + 2 Step 𝑖𝑖𝑖𝑖 + 3 Step 𝑖𝑖𝑖𝑖 + 4 Step 𝑖𝑖𝑖𝑖 + 5

1 and even more – sour cream . And then one day the cat
ate

all the sour
cream

2 and, when loved sour
cream, . And then one day, when sour cream and

3 and bread – with sour
cream with milk. Once in the

evening the cat sour cream,

4 and most of all ate sour cream, , but milk
Once in the
evening the old
woman

so much sour
cream,

5 that’s why, how – with milk, , and that’s why he once all of sour cream

6 he didn’t liked, with milk, , that’s why
every

he liked sour
cream all sour cream

7 and that’s why he liked, when , which was he, to all milk,
8 but he didn’t with creamy and bread. , when he all milk,

9 and if milk with cabbage, . That’s why the
old woman , once the cat all, that

10 but milk in with cheese, . The cat ate , once whole bread and

Table 6: Connecting sequences on steps 𝑖𝑖𝑖𝑖 + 1, …, 𝑖𝑖𝑖𝑖 + 5 of generation: Russian (top) and English
(bottom) versions

As a result, after 𝑖𝑖𝑖𝑖 + 5 steps, the text was generated: “An old woman had a cat, whom she loved very
much and called: Ko-ko-ko. The cat loved milk with bread, and even more – sour cream. And then one
day the cat ate all the sour cream”. This example demonstrates that choosing a sequence after which the
probability of a guide phrase is maximum induces the generative model to lead the text to the required
phrase. At the same time, the connecting sequence may not contain the guide phrase in an explicit form,
but be close to it in meaning due to synonyms.

7 Conclusion

The proposed MaxProb method allows generating stories in accordance with a user-specified sequence of
guide phrases that determines the plot of the story. Guide phrases describe some of the key events in the
story and consist of several words. The method uses a generative language model to estimate the proba-
bility of following a guide phrase after various short sequences of tokens generated by the model. The
method selects the sequence with the highest probability, prompting the model to shift the content of the
text towards the guide phrase. Experiments carried out using the Russian-language corpus of fairy tales
with extracted storylines showed that the proposed method provides a high proportion of story words (more
than 99% in Cov) and phrases (4.89 points in Relevance) in the text. In terms of text quality (PPL measure
and interestingness), the method is comparable to the PromptLearn fine-tuning method, but it does not
require creating a training corpus and the executing of a time-consuming training procedure.

Ethical considerations

The proposed method helps to control the content of automatically generated text according to the user's
needs. Note that large language models, including the one used in the proposed ruGPT-3 method, gen-
erate texts similar to texts written by a person. However, it is not guaranteed that the generated texts are
factually correct. They may contain false or fictitious information that may mislead the non-expert
reader. When using plot phrases containing factually incorrect information, the generation will be based
on false content and, therefore, will lead to the creation of inaccurate texts. Like any tool, it can be used
for negative purposes. Content control can lead to the creation of fake text for the purpose of deception,
disinformation or propaganda. We hope that our method will be used for positive purposes, like helping
writers to create fairy tales in accordance with a given plot. Placing such methods in the public domain
will help develop countermeasures to detect them.

13

MaxProb: Controllable Story Generation from Storyline

Acknowledgements

This work was supported by Russian Science Foundation, project № 23-21-00330, https://rscf.ru/en/pro-
ject/23-21-00330/.

References
[1] Amidei J., Piwek P., Willis A. Agreement is overrated: A plea for correlation to assess human evaluation

reliability // Proceedings of the 12th International Conference on Natural Language Generation. – 2019. –
P. 344–354.

[2] Brown T.B., Mann B., Ryder N., Subbiah M., Kaplan J. et al. Language models are few-shot learners //
Advances in Neural Information Processing Systems. – 2020. – Vol. 33. – P. 1877–1901.

[3] Campos R., Mangaravite V., Pasquali A., Jorge A., Nunes C., Jatowt A. YAKE! Keyword Extraction from
Single Documents using Multiple Local Features // Information Sciences Journal. – 2020. – Vol. 509. –
P. 257–289.

[4] Cho J., Jeong M., Bak J., Cheong Y.-G. Genre-controllable story generation via supervised contrastive learn-
ing // Proceedings of the ACM Web Conference 2022. – 2022. – P. 2839–2849.

[5] Dathathri S., Madotto A., Lan J., Hung J., Frank E., Molino P., Yosinski J., Liu R. Plug and play language
models: A simple approach to controlled text generation // Computing Research Repository. – 2020. –
arXiv:1912.02164. – Access mode: https://arxiv.org/abs/1912.02164.

[6] Fan A., Lewis M., Dauphin Y. Hierarchical neural story generation // Computing Research Repository. –
2018. – arXiv:1805.04833. – Access mode: https://arxiv.org/abs/1805.04833.

[7] Holtzman A., Buys J., Du L., Forbes M., Choi Y. The curious case of neural text degeneration // Proceedings
of the 8th International Conference on Learning Representations. – 2020. – P. 1–16.

[8] Keskar N.S., McCann B., Varshney L., Xiong C., Socher R. CTRL – A Conditional Transformer Language
Model for Controllable Generation // Computing Research Repository. – 2019. – arXiv:1909.05858. – Access
mode: https://arxiv.org/abs/1909.05858.

[9] Korobov M. Morphological Analyzer and Generator for Russian and Ukrainian Languages // Analysis of
Images, Social Networks and Texts. – 2015. – P. 320–332.

[10] Lester B., Al-Rfou R., Constant N. The Power of Scale for Parameter-Efficient Prompt Tuning // Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. – 2021. – P. 3045–3059.

[11] Li B., Lee-Urban S., Johnston G., Riedl M. O. Story generation with crowdsourced plot graphs // Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence. – 2013. – P. 598–604.

[12] Li X. L., Liang P. Prefix-Tuning: Optimizing Continuous Prompts for Generation // Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing. – 2021. – P. 4582–4597.

[13] Lin B.Y., Zhou W., Shen M., Zhou P., Bhagavatula C., Choi Y., Ren X. CommonGen: A constrained text
generation challenge for generative commonsense reasoning // Findings of the Association for Computational
Linguistics: EMNLP 2020. – 2020. – P. 1823–1840.

[14] Meister C., Vieira T., Cotterell R. If beam search is the answer, what was the question? // Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing. – 2020. – P. 2173–2185.

[15] Pascual D., Egressy B., Meister C., Cotterell R., Wattenhofer R. A Plug-and-Play Method for Controlled Text Gen-
eration // Findings of the Association for Computational Linguistics: EMNLP 2021. – 2021. – P. 3973–3997.

[16] Prabhumoye S., Black A.W., Salakhutdinov R. Exploring Controllable Text Generation Techniques // Pro-
ceedings of the 28th International Conference on Computational Linguistics. – 2020. – P. 1–14.

[17] Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I. Language models are unsupervised multitask
learners // OpenAI blog. – 2019. – Vol. 1(8). – Access mode: https://openai.com/blog/better-language-models.

[18] Rose S., Engel D., Cramer N., Cowley W. Automatic keyword extraction from individual documents // Text
Mining: Applications and Theory. – 2010. – P. 3–20.

[19] Rosenthal J.A. Qualitative descriptors of strength of association and effect size. Journal of social service
Research. – 1996. – Vol. 21(4). – P. 37–59.

[20] Tambwekar P., Dhuliawala M., Martin L.J., Mehta A., Harrison B., Riedl M.O. Controllable Neural Story
Plot Generation via Reward Shaping // Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization. –
2019. – P. 5982–5988.

[21] Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. Attention is
All you Need // Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS). –
2017. – Vol. 30. – P. 6000–6010.

[22] Vychegzhanin S., Kotelnikov E. Collocation2Text: Controllable Text Generation from Guide Phrases in Rus-
sian // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference
"Dialogue-2022" – Issue 21. – P. 564–576.

Vychegzhanin S. V., Kotelnikova A. V., Sergeev A. V., Kotelnikov E. V.

14

[23] Welleck S., Kulikov I., Roller S., Dinan E., Cho K., Weston J. Neural text generation with unlikelihood
training // Proceedings of the 8th International Conference on Learning Representations. – 2020. – P. 1–18.

[24] Yang K., Tian Y., Peng N., Klein D. Re3: Generating longer stories with recursive reprompting and revision
// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP
2022). – 2022. – P. 4393–4479.

[25] Yao L., Peng N., Weischedel R., Knight K., Zhao D., Yan R. Plan-and-Write: Towards Better Automatic
Storytelling // Proceedings of the AAAI Conference on Artificial Intelligence. – 2019. – Vol. 33(01). –
P. 7378–7385.

[26] Zhang H., Song H., Li S., Zhou M., Song D. A Survey of Controllable Text Generation using Transformer-
based Pre-trained Language Models // Computing Research Repository. – 2022. – arXiv:2201.05337. Access
mode: https://arxiv.org/abs/2201.05337.

[27] Zhang Y., Wang G., Li C., Gan Z., Brockett C., Dolan B. POINTER: Constrained Progressive Text Generation
via Insertion-based Generative Pre-training // Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). – 2020. – P. 8649–8670.

[28] Zhu Y., Lu S., Zheng L., Guo J., Zhang W., Wang J., Yu J. Texygen: A benchmarking platform for text gen-
eration models // The 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval. – 2018. – P. 1097–1100.

15

MaxProb: Controllable Story Generation from Storyline

	Vychegzhanin S. V., et al.: MaxProb: Controllable Story Generation from Storyline

