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Abstract

We show that the laws of autocorrelations decay in texts are closely related to applicability limits of language 
models. Using distributional semantics we empirically demonstrate that autocorrelations of words in texts decay ac-
cording to a power law. We show that distributional semantics provides coherent autocorrelations decay exponents 
for texts translated to multiple languages. The autocorrelations decay in generated texts is quantitatively and often 
qualitatively different from the literary texts. We conclude that language models exhibiting Markovian behavior, in-
cluding large autoregressive language models, may have limitations when applied to long texts, whether analysis or 
generation.
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Аннотация

Показано, что законы затухания автокорреляций в текстах тесно связаны с пределами применимости язы-
ковых моделей. С использованием дистрибуционной семантики продемонстрировано, что автокорреляции 
слов в литературных текстах затухают по степенному закону. Показано, что дистрибуционная семантика обес-
печивает когерентные показатели затухания автокорреляций для текстов, переведенных на несколько языков. 
Затухание автокорреляций в сгенерированных текстах количественно и часто качественно отличается от ху-
дожественных текстов. Таким образом, языковые модели, демонстрирующие марковское поведение, включая 
большие авторегрессионные языковые модели, могут иметь ограниченную применимость к длинным текстам, 
будь то анализ или генерация.

Ключевые слова: большие языковые модели, законы убывания автокорреляции

1 Introduction
In this work, we endeavor into outlining statistically the limits of applicability of popular contemporary 
language models. To avoid any terminological doubt, when we write “models of the language”, we refer 
to any models that explain some linguistic phenomena, while “language models” refer to probabilistic 
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language models as defined in Subsection 2.3 Probabilistic Language Models. While not long ago prob-
abilistic language models were just models that assign probabilities to sequences of words [4], now they 
are the cornerstone of any task in computational linguistics through few-shot learning [6], prompt engi-
neering [38] or fine-tuning [13]. On the other hand, current language models fail to catch long-range 
dependencies in the text consistently. For example, text generation with maximum likelihood target 
leads to rapid text degeneration, and consistent text generation requires probabilistic sampling and other 
tricks [22]. Large language models such as GPT-3 [6] push the boundary of “short text” rather far (spe-
cifically, to 2048 tokens), but do not remove the problem. 

Our contributions in this work are the following: 
 We explain how the laws of autocorrelations decay in texts are related to applicability of lan-

guage models to long texts; 
 We pioneer the use of pretrained word vectors for autocorrelation computations that allows us 

to study a widest range of autocorrelation distances; 
 We show that the autocorrelations in literary texts decay according to power laws for all these 

distances; 
 We show that distributional semantics typically provides coherent autocorrelations decay expo-

nents for texts translated to multiple languages, unlike earlier flawed approaches; 
 We show that the behavior of autocorrelations decay in generated texts is quantitatively and 

often qualitatively different from the literary texts. 

2 Models of the Language 
In this section, we briefly introduce models of the language that are important for the further consider-
ations. 

2.1 Formal Grammars 

Formal grammars describe how to form strings from a language's alphabet that are valid according to 
the language's syntax. They were introduced by Chomsky in 1950s [7][8]. A formal grammar consists 
of a finite set of production rules in the form  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙 →  𝑟𝑟𝑠𝑠𝑟𝑟ℎ𝑙𝑙 − ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑎𝑎𝑙𝑙, (1) 
where each side consists of a finite sequence of the following symbols: 

 a finite set of nonterminal symbols (indicating that some production rule can yet be applied) 
 a finite set of terminal symbols (indicating that no production rule can be applied) 
 a start symbol (a distinguished nonterminal symbol) 

Chomsky grammars constitute a hierarchy, see Table 1. While the original hierarchy implies strict 
inclusion of lower class grammars to higher ones, now there are several types of grammars known to 
fall between or partially overlap with the original classes (see, for example, [10]). 

2.2 Distributional Semantics and Models 

Distributional hypothesis assumes that linguistic items with similar distributions have similar meanings 
or function and was likely first introduced by Harris [20] in 1954 and was popularized in the form "a 
word is characterized by the company it keeps" by Firth [17]. The basic idea is to collect distributional 
information in, say, high-dimensional vectors, and then to define similarity in terms of some metric, say 
Euclidean distance or the angle between the vectors. 

Table 1: Chomsky hierarchy of formal grammars (from [10]) 
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Early distributional approaches from 60s relied on hand-crafted features of the words [35], while 
more recent – on statistics of varied sorts. The first generation of statistical distributional semantics 
approaches included Latent Semantic Analysis (LSA) [11][12], Hyperspace Analogue to Language 
(HAL) [24][25], and many others, see [15] for a review. The second generation primarily consists of 
word2vec [31][32] and GloVe [37] models, the first, implicitly, and the second, explicitly adding the 
word analogy task into the training objective, so that similar relationships between words should be 
described by similar difference vectors between embeddings. The third generation of statistical distri-
butional semantics models was started by emergence of BERT contextual word embeddings [13]. BERT 
have combined the word and its current context into a single vector embedding and used Masked Lan-
guage Modelling training objective. A lot of recent work sprouted from BERT.  

2.3 Probabilistic Language Models 

Probabilistic language models consider sequences 

𝑡𝑡1:𝑚𝑚 =  {𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑚𝑚} (2) 

of tokens from the lexicon ℒ. An autoregressive language model estimates the probability of such a se-
quence 

  

𝑃𝑃(𝑡𝑡1:𝑚𝑚) = 𝑃𝑃(𝑡𝑡1)𝑃𝑃(𝑡𝑡2|𝑡𝑡1)𝑃𝑃(𝑡𝑡3|𝑡𝑡1:2) … 𝑃𝑃(𝑡𝑡𝑚𝑚|𝑡𝑡1:𝑚𝑚−1) =  ∏ 𝑃𝑃(𝑡𝑡𝑘𝑘|𝑡𝑡1:𝑘𝑘−1)
𝑚𝑚

𝑘𝑘=1
 (3) 

using the chain rule. Most models introduce the Markov [30] assumption that the probability of a token 
depends on the previous 𝑛𝑛 − 1 tokens only, thus approximating (3) with a truncated version 

  

𝑃𝑃(𝑡𝑡1:𝑚𝑚) ≈ ∏ 𝑃𝑃(𝑡𝑡𝑘𝑘|𝑡𝑡𝑘𝑘−𝑛𝑛+1:𝑘𝑘−1)
𝑚𝑚

𝑘𝑘=1
(4) 

While the language models based on recurrent [33], and specifically, LSTM [41] neural networks do 
not introduce the Markov assumption explicitly, we will shortly see that in practice they do exhibit Mar-
kovian behavior. On the other hand, it is long known that Markov models describe stochastic regular gram-
mars [42]. 

3 Why Autocorrelations Decay Laws Matter? 
In this section we explain why autocorrelation decay laws matter a lot to computational linguistics’ near-
future. 

3.1 Computing Autocorrelations Using Distributional Semantics 

Suppose we have a sequence of 𝑁𝑁 vectors 𝑉𝑉𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑, 𝑖𝑖 ∈ [1, 𝑁𝑁]. Autocorrelation function 𝐶𝐶(𝜏𝜏)  is the av-
erage similarity between the vectors as a function of the lag 𝜏𝜏 = 𝑖𝑖 − 𝑗𝑗 between them. The simplest metric 
of vector similarity is the cosine distance  𝑑𝑑(𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) = cos∠(𝑉𝑉𝑖𝑖, 𝑉𝑉𝑗𝑗) =  𝑉𝑉𝑖𝑖∙𝑉𝑉𝑗𝑗

‖𝑉𝑉𝑖𝑖‖‖𝑉𝑉𝑗𝑗‖, where ∙ is a dot product 

between two vectors and ‖ ‖ is an Euclidean norm of a vector. Thus, 

𝐶𝐶(𝜏𝜏) = 1
𝑁𝑁 − 𝜏𝜏 ∑ 𝑉𝑉𝑖𝑖 ∙ 𝑉𝑉𝑖𝑖+𝜏𝜏

‖𝑉𝑉𝑖𝑖‖‖𝑉𝑉𝑖𝑖+𝜏𝜏‖

𝑁𝑁−𝜏𝜏

𝑖𝑖=1
. (5) 

𝐶𝐶(𝜏𝜏)  ranges from −1  for perfectly anticorrelated sequence (for 𝜏𝜏 = 1  and 𝑑𝑑 = 1  that would be 
1, −1, 1, −1 etc.) to 1 for a perfectly correlated one (for 𝜏𝜏 = 1 and 𝑑𝑑 = 1 that would be 1, 1, 1, 1 etc.).  

A distributional semantic assigns a vector to each word or context in a text. Thus, a text is transformed 
into a sequence of vectors, and we can calculate an autocorrelation function for the text. 
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3.2 Transformer Language Models Exhibit Markovian Behavior 

In this paper, by Markovian behavior, we mean that large language models actually use only a limited 
context, often significantly less than the maximum context possible. Thus they implicitly or explicitly 
use the Markov assumption. Two separate phenomena classes that prove that transformer language mod-
els exhibit Markovian behavior are known, and in Section 5.5 we introduce the third one. 

One such phenomenon is the rapid text degeneration when a transformer language model is used to 
generate text with maximum likelihood target [21][28]. Maximization-based decoding methods such as 
beam search lead to output text that is bland, incoherent, or gets stuck in repetitive loops [22] that are 
extremely reminiscent of positively recurrent Markov chains (see Figure 1). 

The other phenomenon is studied in detail in [10]. The authors have found that the networks roughly 
match the computational models associated with the Chomsky hierarchy: RNNs can solve tasks up to 
the regular level, Stack-RNNs up to the DCF level, and Tape-RNNs up to the CS level. Finally, they 
observed that Transformers and LSTMs are less aligned with the Chomsky hierarchy: Transformers fail 
on regular tasks, while LSTMs can solve tasks more difficult than regular. The results of [10] are sum-
marized in Table 2. As transformers can at most generalize to regular languages and Markov models 
describe stochastic regular grammars [42], we can safely say that transformers exhibit behavior no richer 
than regular. 

3.3 Markovian Implies Exponential Correlations Decay, Probabilistic Context-Free Grammars 
Can Generate Power Laws 

Assume that the sequence (2) is an output of a random source that takes values in ℒ. If the source is 
Markovian, it can be shown [23] that the autocorrelations (or, equivalently, mutual information between 
chunks of the text) decay exponentially. Namely, the following theorem holds: 

Theorem 1 ([23]). Let 𝑀𝑀 be a Markov matrix that generates a Markov process. If 𝑀𝑀 is irreducible 
and aperiodic, then the asymptotic behavior of the mutual information 𝐼𝐼(𝑡𝑡1, 𝑡𝑡2) is exponential decay 
toward zero for |𝑡𝑡2  − 𝑡𝑡1| ≫ 1 with decay timescale log 1

|𝜆𝜆2| , where 𝜆𝜆2 is the second largest eigenvalue 
of 𝑀𝑀. If 𝑀𝑀 is reducible or periodic, 𝐼𝐼 can instead decay to a constant; no Markov process whatsoever 
can produce power law decay. 

 
Figure 1: Beam search produces degenerate text (from [22]) 

 

 
Table 2: Alignment of neural network architectures with Chomsky hierarchy (from [10]) 
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One the other hand, the following theorem holds: 
Theorem 3 ([23]). There exist a probabilistic context-free grammar such that the mutual information 

𝐼𝐼(𝐴𝐴, 𝐵𝐵) between two symbols 𝐴𝐴 and 𝐵𝐵 in the terminal strings of the language decay like 𝑑𝑑−𝑘𝑘, where 𝑑𝑑 
is the number of symbols between A and B. 

3.4 If the Natural Language Exhibits Power Law Correlations Decay, We Can Do Better Than 
Autoregressive Language Models 

Summarizing the above, if texts in the natural languages exhibit exponential autocorrelations decay, 
autoregressive language models are good to analyze or generate texts of any length. On the other hand, 
if texts in the natural languages exhibit power law autocorrelations decay, building language models that 
exhibit at least hierarchical, context-free-grammar-ish, slow-correlation-decay behavior may be benefi-
cial for a variety of downstream tasks. This may be not enough to model long texts successfully because 
natural languages cannot be completely described by context-free grammars (see, for example, [40]), 
but may be a meaningful step. 

4 Studying Autocorrelations Decay Laws in Texts 

4.1 Prior Research  
Schenkel, Zhang, and Zhang [39] were likely the first to empirically find the power law autocorrelations 
decay in texts using a random walk model with an arbitrary mapping of characters to fixed length, 5 bit 
sequences. They studied 10 texts in English. The obvious drawback of their approach is dependency on 
encoding. Amit et al. [3] explored this problem in various translations of the Bible and have shown that 
the power law exponent depends on both the language and the codification. Testing multiple random 
mappings would provide a more reliable estimate of power law exponents, but such a research is a matter 
of future. Random walk models have later been used to find the power law in text by several researchers, 
including Ebeling and Neiman [14], Kokol et al. [26] (who, by the way, in our opinion have not found 
power-law autocorrelations in literary writing on distances studied, but found power-law autocorrela-
tions in computer programs, in a perfect agreement with the fact that computer programs are described 
by context-free grammars), Pavlov et al. [36], who find multifractal structures in the text, and Manin 
[29], who attribute long-range correlations to slow variations in lexical composition within the text. 

Alvarez-Lacalle et al. [2] used a version of first-generation distributional semantic model to study 
autocorrelations in 12 literary texts in English to find power law autocorrelations decay. Altmann, Cris-
tadoro, and Degli [1] analyze 41 binary functions on words separately on ten English versions of inter-
national novels. They separate the effects of burstiness and long-range correlations in the power spec-
trum and find a power law correlations decay. Lin and Tegmark [23] in a short empirical part of their 
study use three text corpora: 100 MB from Wikipedia, the first 114 MB of a French corpus and 27 MB 
of English articles from slate.com. They observe the power law decay of mutual information, but note 
that the large portion of the long-range mutual information appears to be dominated by poems in the 
French sample and by the html-like syntax in the Wikipedia sample. They have also shown similar power 
decay laws for autocorrelations in natural music and exponential laws in generated music, the result 
reproduced by different means by Yamshchikov and Tikhonov [43]. Corral et al. [10] study intervals 
between consecutive appearances of specific words in literary texts in 4 languages, including Finnish (a 
rare study of highly agglutinative language) to find that most words have a universal dimensionless 
probability density function described by gamma distribution. Gillet and Ausloos [18] and Montemurro 
and Pury [34] study sequences built from word frequencies and word lengths to find the power law 
autocorrelations decay. 

4.2 Research Questions 

Given the prior art, many research question remain unanswered. The ones we address in this work are: 
Q1. How accurately can we say that autocorrelations in texts decay according to a power law? 
Q2. Can we reject the hypothesis of exponential decay of correlations? 
Q3. Does the law of decay depend on the language of the text? 
Q4. Over what range of distances does the decay in autocorrelations follow a power law? 
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Q5. Are autocorrelations in LM-generated texts any different from literary texts? 

4.3 Methods 

In this work we use two distributional semantic models to estimate autocorrelations in long texts. One 
is a bag-of-words (BOW) embedding model of Alvarez-Lacalle et al. [2]. The other distributional se-
mantic model we use is GloVe [37]. We use pretrained multilingual GloVe vector embeddings from [16]. 
We filter out both frequent and rare words filtering similarly to [2] when using BOW.  

BOW assigns a vector of dimension 𝑑𝑑 to each word first, and then averages these vectors over a 
window of the size 𝑎𝑎. This averaged vector is then assigned to a word in the center of averaging window. 
The exact procedure for BOW is described in detail in [2]. GloVe naturally maps each word to a vector; 
we then center the vector system by subtracting the average of vectors over the whole text, and, similarly, 
average over a window of the size 𝑎𝑎 when we need direct comparison to BOW. After that in both cases 
we can compute the autocorrelation function following Section 3.1. 

5 Experiments 

5.1 The Dataset 
For our studies we have collected a dataset of long literary and philosophical works in English, Spanish, 
French, German and Russiani each: Critique of Pure Reason, Don Quixote de la Mancha, Moby-Dick 
or, The Whale, The Adventures of Tom Sawyer, The Iliad, The Republic and War and Peace. The only 
translation absent is Moby-Dick in German, which happened to be substantially abridged. The texts have 
been obtained from Project Gutenberg, Wikisource, Royallib and lib.ru and preprocessed so as to fit our 
research purposes: 

 copyright texts were removed from the files; 
 author and translator notes were removed; 
 table of contents and any indices were removed, except for the table of contents from Don Quix-

ote; 
 any links to illustrations have been removed; 
 in the Russian version of War and Peace any non-Russian text have been replaced with Russian 

translations; 
 etymology section was removed from Moby-Dick or, The Whale, where encountered, as some 

languages missed it. 

5.2 Choosing Between Hypotheses of Power Law and Exponential Decay of Correlations 

To address Q1. “How accurately can we say that autocorrelations in texts decay according to a power 
law?” and Q2. “Can we reject the hypothesis of exponential decay of correlations?” for each text, we 

  
Figure 2: Autocorrelations in Don Quixote (English) computed using GloVe, a = 1, d = 300, 𝜏𝜏 ∈

[1, 40000] Left: log-log coordinates. Right: log-linear coordinates. 
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have computed autocorrelations for a series of distances 𝜏𝜏 = 𝑛𝑛 ∗ 10𝑘𝑘, 𝑛𝑛 ∈ [1, 9] , and approximated the 
points produced by a straight line in both log-log and log-linear coordinates using the least squares 
regression. We have evaluated the goodness of fit of each model by MAPE (Mean Absolute Percentage 
Error). The range of 𝜏𝜏 for Glove was chosen from the first non-negative autocorrelation value ε (auto-
correlations on small distances 𝜏𝜏 = [1, 2] happened to be sometimes negative). 

The results for the English translation of Don Quixote are presented in the Figure 2. It can be seen 
that in log-log coordinates the regressed straight line approximates data well enough, unlike log-linear 
coordinates.  

Table 3 lists the MAPE metrics of goodness of fit of autocorrelation by power and exponential laws 
(the smaller the better). It can be easily seen that for all the texts but one the hypothesis of exponential 
decay of correlations can be rejected. The peculiarity of the French translation of The Iliad is that the 
autocorrelation with 𝜏𝜏 = 1  is very small but still positive, thus both producing significantly larger 
MAPE and ruining the approximation. Additional graphs are presented in the Appendix A. 

5.3 Determining the Dependency of the Autocorrelations Decay Law on the Language of the 
Text 

To study the dependency of the autocorrelations decay law on the language of the text, we have meas-
ured 𝐶𝐶(𝜏𝜏) for the same multilingual dataset as in Section 5.1 and fitted with power law 𝐶𝐶(𝜏𝜏) = 𝛽𝛽 ∙ 𝜏𝜏𝛼𝛼. 
Table 4 presents results for Don Quixote. It can be easily seen that the parameters of power law, as well 
as the accuracy of the approximation are extremely consistent among languages for both embeddings, 
with standard deviation of exponent being 7% for BOW and 10% for GloVe. Moreover, the exponents 
for BOW and GloVe are also consistent within 15%, which we consider a very good agreement. This is 
in a stark contrast with the results from [3] that critically depend on the codification and language. 

  Power Law Exponential Law 

 
BOW 

en fr es ru en 
BOW 

en fr es ru en 
The Adventures of 
Tom Sawyer 0,16 0,11 0,16 0,14 0,21 0,52 0,32 0,33 0,33 0,55 
The Republic 0,21 0,15 0,09 0,10 0,13 0,58 0,28 0,25 0,31 0,38 
Don Quixote 0,20 0,11 0,12 0,09 0,20 0,66 0,24 0,22 0,23 0,44 
War and Peace 0,20 0,13 0,11 0,08 0,09 0,54 0,24 0,24 0,28 0,42 
Critique of Pure Rea-
son 0,09 0,07 0,15 0,10 0,14 0,27 0,17 0,20 0,21 0,25 
The Iliad 0,24 2,37 0,16 0,10 0,19 0,63 2,33 0,17 0,19 0,54 
Moby-Dick or, The 
Whale 0,14 0,12 0,11 0,09 0,15 0,40 0,22 0,22 0,22 0,47 

Table 3: Goodness of fit of autocorrelation by power and exponential laws in terms of MAPE. 
BOW: a=200, d=100, 𝜏𝜏 ∈ [250, 4200] Glove: a = 1, d = 300, 𝜏𝜏 ∈ [ε, 40000] 

  BOW GloVe 
 𝛼𝛼 𝛽𝛽 MAPE 𝛼𝛼 𝛽𝛽 MAPE 
en -0.7718 0.9545 0.1054 -0.7246 1.1582 0.1044 
fr -0.8836 1.1407 0.2154 -0.7749 1.1051 0.2150 
es -0.7601 0.9332 0.1057 -0.7083 0.9947 0.1271 
ru -0.7412 0.7874 0.0787 -0.6431 0.9173 0.0548 
de -0.8072 0.9542 0.1411 -0.8326 1.3478 0.1657 

Table 4: Dependence of the autocorrelations power decay law in Don Quixote on the language 
and embedding. 𝜏𝜏 ranges from 200 to 4000 words, d=300, a = 200 
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5.4 Determining the Range of Distances Where the Decay in Autocorrelations Can Be 
Considered Subject to a Power Law 

As the BOW approach requires a sufficiently large window size 𝑎𝑎, we have studied the dependence of 
autocorrelations on distance ranges using GloVe embeddings with a window size 𝑎𝑎 = 1. For each text 
we explored all the ranges of 𝜏𝜏 spanning at least a decimal order of magnitude, and fitted the autocorre-
lations with the best fitting log, power and exponential functions. We then mapped the differences be-
tween MAPE of power and other approximations, as well as the ranges where each function fits the data 
the best. The results for the Critique of Pure Reason in English and The Adventures of Tom Sawyer in 
Spanish are presented on Figure 3. Each small square on these images corresponds to a range of 𝜏𝜏 de-
termined by its vertical (start) and horizontal (end) coordinates, for example, the full range of 𝜏𝜏 ∈
[1, 40000] corresponds to the top right corner. Additional graphs are presented in Appendix B. 

It can be seen that for the shorter spans of 𝜏𝜏 the best approximations are sometimes logarithmic or 
exponential but their advantage is not significant, while for the longer ranges the best approximations 
are always power law. Additionally, the location of such ranges is hectic. We conclude that the cases 
where exponential or logarithmic approximation is better than the power law approximation represent 
natural short-range variability and cannot be considered a regularity. 

5.5 Autocorrelations in Generated Texts 

The behavior of autocorrelations is qualitatively different when the text is generated. The simplest way 
to generate an incoherent text is to shuffle words in a text. Figure 5 demonstrates that there is no specific 
autocorrelations decay law for an incoherent text. 

To study autocorrelations in texts generated by large language models, we have used GPT-2 base [6] 
with the default generation parameters, and Structured State Space model S4 base [19] with the default 
generation parameters, and generated some 10K word continuous text with each model. The generated 
texts are listed in Appendix C and Appendix D, respectively. We then performed the same procedure as 

   

   

Figure 3: Autocorrelations in Critique of Pure Reason in English (top) and The Adventures of 
Tom Sawyer in Spanish (bottom) computed using GloVe, 𝑎𝑎 = 1, 𝑑𝑑 =  300. Vertical axis: start of  𝜏𝜏 

range. Horizontal axis: end of 𝜏𝜏 range. Left: difference between power and log approximation 
MAPE. Middle: difference between power and exp approximation MAPE. Right: ranges where 

power (blue), exp (gray), and log (green) approximations are the best. 
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in Section 5.4, mapping ranges where each decay law provides the best approximation. The results are 
presented on Figure 4.  

The autocorrelations decay in an exponential manner in the text generated by S4 model, while ac-
cording to a power law on long distances and to log law – on short distances in the text generated by 
GPT-2. The autocorrelations in generated texts are significantly larger and decay much slower than the 
ones in the natural texts. In our S4 and GPT-2 generated examples, the power law coefficients are 𝑎𝑎 =
 −0.045, 𝑏𝑏 =  −0.71 and 𝑎𝑎 =  −0.027, 𝑏𝑏 =  −0.77, respectively. At the same time we have not seen 
the coefficient a less than 0.1 for any natural text in English we have studied, and the average is closer 
to 0.2, indicating almost 10-fold gap between the power law decay rates in natural and generated texts. 
Typical values of coefficient b for natural texts are between -1.5 and -2, indicating at least 2-fold gap 
between natural and generated texts. 

Thus we can say that the autocorrelations decay in generated texts are quantitatively and often quali-
tatively different from the literary texts. The conditions that influence the autocorrelations decay laws 
in generated texts may include sampling approach, temperature and other hyperparameters. This is a 
matter of future research.  

  
Figure 4: Autocorrelations in texts generated by GPT-2 (left) and S4 (right) models computed 

using GloVe, 𝑎𝑎 = 1, 𝑑𝑑 =  300, ranges where power (blue), exp (gray), and log (green) 
approximations are the best depicted. Vertical axis: start of  𝜏𝜏 range. Horizontal axis: end of 𝜏𝜏 

range.  

 

 

 

 
Figure 5: Autocorrelations in a randomly shuffled The Adventures of Tom Sawyer in Spanish 

computed using GloVe, a=1, d=300. Left: log-log, to right: log-linear coordinates 
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6 Conclusions 
We have shown empirically that autocorrelations in literary texts are decaying following the power law 
with the only upper limit being the length of the work itself and the hypothesis of exponential decay can 
be rejected for these distances. We have also shown empirically that the laws of autocorrelation decay, 
if measured using distributional semantics models are typically the same for the literary work translated 
to different languages. This contrasts previous findings that used flawed technique based on encoding-
dependent random walks. Thus, we believe that distributional semantics models are a robust enough tool 
to measure autocorrelations in long texts. 

The autocorrelations decay in generated texts is quantitatively and often qualitatively different from 
the literary texts. Based on the above, we can conclude that for long text processing one may need 
architectures different from the autoregressive ones, and many questions remain unanswered. 
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