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Abstract 

In this article, we present a method of anaphoric proper names detection in fictional texts using Word2Vec model 
and algorithms of community detection on graphs. This method allows grouping different namings of a single entity 
and can be useful as a part of preprocessing texts for further analysis such as building social networks or training 
neural models. The method uses large text collection, related to the same domain. The foundation of the method is 
training of a Word2Vec model using information on direct characters interactions. This model allows building a social 
graph of characters. Than, the Louvain algorithm is used to divide the graph into communities containing different 
names of characters related to the same denotation. 
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Аннотация 

В этой статье мы представляем метод определения именований героев художественных произведений, 
относящихся к одному денотату, использующий модель Word2Vec и алгоритмы выделения сообществ на гра-
фах. Метод позволяет объединять различные названия одной сущности в группу с достаточно высокой точ-
ность и может быть полезен при использовании в качестве этапа препроцессинга текстов для дальнейшего 
анализа: построения графов социальных отношений или обучения нейросетевых моделей. Метод применя-
ется к большой коллекции текстов, относящихся к одному домену. Основой метода является обучение модели 
Word2Vec с использованием информации о прямом взаимодействии героев. Модель служит для построения 
графа связей между героями, из которого при помощи Лувенского алгоритма выделяются сообщества, содер-
жащие разные названия одного героя. 

Далее проводится фильтрация разных героев, объединяемых моделью. 
Ключевые слова: графы социальных отношений; графы; word2vec; определение анафоры; художествен-

ные тексты; Лувенский алгоритм 
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1 Introduction 
Investigation of interaction among characters of literary works allows better understanding the overall 
plot of a masterpiece. One of the commonly used representations of such interactions is a graph. Its 
nodes represent literary characters, described in an investigated work, edges represent such interactions 
among characters as conversations, direct actions, and being in the same place. Investigation of large 
graphs allows describing two types of those: Barabasi-Albert [1] and ‘Small World’ [2]. The authors of 
[3] found that graph of character interactions has properties of the further and does not meet all the 
properties of the later. 

There are several approaches for coupling nodes depending on the used information. In [4], an edge 
in the graph is created between two characters “if they were both syntactic arguments under the same 
predicate or appeared as two conjuncts”. For the sake of community detection, the author used the Lou-
vain algorithm [5]. Another approach is using mutual appearance in the same piece of text [6]. 

Investigation of drama corpora (e.g. [3]) has a big advantage. Such a corpora was preliminary tagged 
including information on phrases attribution by characters. Thus, it is easier to use the common appear-
ance of characters in the same part of text or information of whom their phrases are addressed in order 
to build the social graph of a masterpiece.  

However, researchers are faced with the problem of several names for a character. In different parts 
of a text, an author can use the name of a character, his or her surname, their combination, position, 
gender names (boy, girl, …), and other substitutive nouns. Thus, there is a problem of joining all of these 
names in the same cluster. Manually tagged corpora have an advantage that all these names can be 
unified by an assessor [6]. But that is not the case of automatically tagged large corpora. One of the 
solutions in the later case is preprocessing, i.e. selection of different names of the same character and 
automatic replacement of a name occurrence by the unified one. But it does not work in the case of a 
big number of unknown characters. Methods of anaphora resolution (see, e.g. [7]) could not help find 
different names for main characters.  

In this paper, we introduce a new method for calculation of similarity between characters’ names. The 
method is able to cluster names of the same character in a community of a social graph. The method is 
based on training a Word2Vec model on entity names co-occurrence, building a social graph according 
to similarity between those entities calculated by the model, and applying the Louvain algorithm for the 
sake of community detection. 

2 Used Data  

2.1 Text Collection 

As a source data for our method, we need a collection of mono-domain texts, e.g. works created by one 
author or dedicated to the same fictional setting. We use a collection of fanfiction texts based on J.K. 
Rowling “Harry Potter” books. There are several reasons for such a decision. 

• Authors of fanfiction texts use original setting or at least original characters as the basis of their 
work; so, all the texts sharing the same original subject and the same setting would share almost 
the same characters space and could be treated as a single domain. 

• “Harry Potter” as a fiction is extremely popular, this fact provides us with a large amount of 
data. This, for its turn, gives us an opportunity to balance the imperfect performance of language 
models. 

• Most of the fanfiction sites are open resources which can be easily and automatically crawled. 
Considering all these facts, we chose the https://fanfics.me/ site. All the fanfiction texts belonging to 

the “Harry Potter” setting were crawled from this site in summer 2022 and then used in the algorithm 
described below. 

The amount of data collected is 22252 texts which have around 336 million of tokens in total. This is 
a large collection of data so we have to take it into consideration while making a decision about prepro-
cessing algorithms which will be discussed below. 
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2.2 Text Preprocessing 

Our algorithm requires syntactically parsed natural texts. There are a variety of open source tools per-
forming this task. Such tools can be multilingual and support Russian alongside many other languages 
or keep it as the only or almost only one available. For example, Spacy [8] and Stanza [9] provide models 
for more than twenty languages each while Natasha and DeepPavlov [10] are concentrated mostly on 
models for Russian language. There is also a UD-Pipe module but it is almost deprecated. 

Besides the list of supported languages, mentioned models have different quality and capacity fea-
tures: some of them are relatively precise but the level of their efficiency is quite low, some, in contrast, 
are surprisingly fast but their quality is below the acceptable level. Considering preprocessing as an 
important step which can dramatically affect all future calculations, we tend to prioritize quality over 
productivity. However, as it was already mentioned, we are working with a large amount of textual data 
processing which can require an inappropriate amount of time, thus we have to search for compromises. 
Because of all mentioned above, we decided to use the Spacy framework as it is relatively fast even 
without using a GPU and shows an appropriate, but not perfect, performance. 

The next step of preprocessing is Named Entity Recognition (NER) which is an ongoing and difficult 
task itself; however, we need it to shape the initial list of characters. Note that on some level of precision, 
this list can be gained on the stage of syntactic parsing since most parsers have the PROPN tag in their 
tagset. Considering this, using NER is not so much about detecting entities in general but about detecting 
multi word namings as it is usually beyond the capabilities of syntactic parsers.  

As a result of data preprocessing we should have a corpora of syntactically parsed texts with results 
of the NER algorithm. We used the one proposed by Spacy as it can be easily added to its pipeline. 

3 Grouping of Proper Names Related to the Same Denotation 
As can be seen from the task formulation, our algorithm can be divided into two parts. The first one 

is collecting of the characters co-occurrence information from the texts; so as it can be utilized as training 
data for the further model. The second part is the model training.   

For the sake of model training, we need a list of pairs of characters which satisfies the condition of 
being “interacting”. Thus, the first stage can be divided in several subtasks too. In the beginning, we 
need to define what “character” and “interaction” are in terms of grammatical traits obtained from the 
preprocessing step; then the algorithm of applying these conditions to the process of list of pairs extrac-
tion should be described. 

We define an entity (not necessarily named) or a character (if we are speaking about it in terms of 
fiction terminology) as a token which meets one of the following conditions: it is tagged as an entity by 
the NER model; it is tagged as a proper noun by the parser; it is tagged as an animate noun.  

There are several reasons for such a decision. To begin with, we want proper names to be considered 
as an entity. However, neither syntactic parsers nor NER models have good precision, while we are 
speaking about them in terms of entity extraction from fictional texts. However, there is a chance that 
mistakes of the syntactic parser can be smoothed by NER model predictions and vice versa, so we de-
cided to unite their decisions. Moreover, additional difficulties are provided by the fact that we need not 
only named entities but also their substitutive nouns to be detected. Here we hope that inanimate objects 
could not be considered as fictional characters (that is not the case of fairy tales, which are not the subject 
of this article). So, we select all animate nouns as hypothetical entities entailed with some of the char-
acters.  

After we proposed a definition of an entity, we now can discuss conditions of being interacting. Fol-
lowing [4] line of thought, we decided to use being descendants of one vertex in the dependency tree as 
a definition of connection existence. Unlike the approach described in the mentioned work where the 
author uses all predicates as the parenting vertices, we decided to make constraints on such vertices 
stricter: we consider only verbs being a predicate. Summarizing this with a part about entity definitions 
we can postulate the following definitions of a pair: it consists of the two entities which are the descend-
ants of the same verb in a dependency tree. 

We have found that a pair of characters can be considered as a context to each other. This allows us 
to train a language model treating pairs and entities as sentences and tokens respectively. In this project, 
we decided to train a Word2Vec model [11] in order to get vector representation (embeddings) for each 
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character. There are several reasons for choosing this architecture. On the one hand, Word2vec is a static 
language model that provides us with a single embedding for each entity from vocabulary. Since we 
want to get a method providing us with an absolute measure of semantic similarity between entities, the 
ability to calculate an average representation of a token becomes useful. On the other hand, considering 
usage of a contextualized model, we understood that the described way of representing context does not 
provide enough information for the stable learning of a contextual model.  

Now we can now describe the process of obtaining the trained model. At the beginning all the entities 
should be extracted keeping their affiliation with sentences since we will need this information to make 
a decision about connection existence. Then for every possible pair of entities within a sentence it should 
be checked if these entities are the descendants of the same verb in the dependency tree. As a result of 
the described process, we have a list of pairs of characters ordered by their appearance in our collection 
of texts. Then it is used to train a word2vec model so that characters in every pair have only each other 
as a context (it is guaranteed by the window size parameter of a word2vec training algorithm).  

Using the trained model, we then build a social graph of characters. At the first stage we select all 
named characters (entities which are marked by NER algorithm or are a proper noun) with frequency 
more than the reference minimal frequency (let be equal to 50) as initial nodes of the graph. Then for 
every node we extract top-100 nearest neighbors having cosine similarity more than 0.5 and frequency 
more than 20. Then we create an edge between two nodes if at least one of them is in the top-100 list 
for another even if they are both initial nodes. The result is a weighted graph where weights are desig-
nated by the cosine similarity between nodes. 

As it noted in [13] “The weight of a link between two nodes in a social network can be used to 
represent the similarity of two characters. The larger the weight is, the more likely the two characters 
will be related to each other.” However, it appears that cosine similarity is not enough. There are named 
entities, which have a relatively high proximity but have to be divided, such as twin brothers Fred and 
George Weasley, who are always acting together, or Harry Potter and Hermione Granger, who share 
their adventures. However, there are entities which have smaller cosine similarity but have to be con-
sidered as a single entity. That is the case of different namings of one character whose frequencies differ 
dramatically.  

In [4], characters which belong to the same predicate are considered as two different persons. In our 
case, if two extremely similar characters frequently appear as syntactical siblings in a parsed text, then 
they should be considered as two different persons. However, our experiments demonstrated that such 
an approach fails in case of less frequent characters as they often provide lesser statistics than we need 
for their separation. Note, that there are a variety of characters having both less and more frequent names.  
That is why we need here a community detection algorithm which will separate entities considering the 
whole picture of their relations.  

Following [4], we decided to use the Louvain algorithm [5]. As a result of applying this algorithm to 
a social graph we obtain groups of entities which have closer relations. By changing the resolution pa-
rameter of a Louvain algorithm, we can control the density of achieved communities as its high value 
makes the algorithm favor smaller communities. In our case it means that we can decide if communities 
should contain names of different but narratively close characters or, if using higher values of resolution 
parameter, different name of the same character. Although all of the mentioned parameters (threshold of 
cosine similarity, minimal frequencies and resolution parameter) make the precision higher, we cannot 
just make them as high as possible since in the extreme case we would get an empty graph or a list of 
one-node communities which makes all the process meaningless.  

4 Results of Experiments 
We trained a model on 5 epochs and words of the minimal frequency 10. We were surprised to see 

that a model that was accidentally trained with pairs duplicates (pairs like “Harry Ginny” and “Ginny 
Harry” were both added to the list) showed a more stable performance and more representative results; 
so, we decided to use it as a basic approach in the further work. We used all entities lowercased and 
lemmatized; we also joined multiword entities extracted with NER model into single strings. 

However, the first attempt of training the model showed that there are a lot of mistakes of lemmati-
zation and pos-tagging. We decided to begin with solving the first problem. In order to map different 
forms of the one entity, we built a graph where an edge between two entities means that they have 
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Levenshtein distance [12] equal to 1 (see Fig. 1). After we got such a graph, we considered one con-
nected component to be different names of a character; however, it happened to need a little manual 
correction. After that we mapped all the entities in a connected component to a single character’s name 
which was the most frequent one in the original component. Then we retrained a model. 

 
Figure 1: Graph of tokens having the Levenstein distance equal to 1 

After retraining, the solution for the problem of incorrect pos-tagging (that actually means that we 
had adverbs or adjectives marked as entities) happened to be found. It appears that almost all incorrectly 
tagged words formed a single connected component (see Fig. 2), so we merely removed from the train-
ing data all the pairs including these tokens. Then we retrained the model again. 

 
Figure 2: Graph of entities connections for the component with pos-tagging mistakes 

Having a final model, we repeated all the process of graph building. The resulting graph had an inter-
esting structure: there was a big connected component which contained almost all main characters and 
needed to be divided into parts (see Fig. 3) and a lot of small ones. As can be seen on the picture, the 
main connected component itself has several easily distinguished parts such as the one in the upper-left 
part which is devoted to Ministry of Magic characters or the bottom part whose components are all about 
geographical names both real and magical. Sadly, we still do have a small amount of mistagged words 
but there are already much less of them than there were in the previous iterations. 
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Figure 3: Graph of entities connections for the biggest connected component 

As for the resolution parameter, we can start with 10 as the lower values of the algorithm does not 
really distinguish anything (it should be mentioned that this parameter has to be selected independently 
for every graph). However, this value appears to be too low and provides us with large groups of con-
nected yet not the same characters (see Fig. 4). 

 
министр магии, робардс, фаджа, сэвидж, фаджу, визенгамотом, шеклболт, фадж, корнелиус, 
скримджер, министр, кингсли, бруствер, визенгамот 
америка, уэльс, испания, канада, шотландия, франция, германия, швейцария, греция, италия, 
ирландия, китай, бразилия 
петрификус тоталус, инкарцеро, секо, экспеллиармус, петрификусом, протего, ступефаем, 
петрификус, ступефай, экспеллиармусом, непростительный 
косой аллея, зонко, лютный, коукворт, лондон, манчестер, флориш, косой переулок, косую 
аллея, хогсмид, эдинбург 
учитель, директор, профессор, флитвик, филиус, минерва, мастер зелий, минерва макго-
нагалл, диплет, декан, макгонагалл 
риддл, том риддл, лорду, лорд, реддл, том, волдеморт, лорд Волдеморт, повелитель, воланде-
морт, милорд 
джим, лили эванс, эванс, лили, сохатый, шмэри, марлин, адаре, джеймс поттер, джеймс, скорп 
дин томас, уизли, рон, рон уизли, рональд, рыжик, уизел, дин, рональд уизли, перси 
блэка, тонкс, блек, бродяга, нимфадора, сириус, блэку, блэк, сириус блэк, сири 
чарли, джордж, фред уизли, анджелина, фред, кэти белл, джордж уизли, билл, кэти, близнец | 

Figure 4: Biggest 10 communities detected by the Louvain algorithm  
with resolution parameter equal to 10 
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If we increase the value to 20, we will still not get enough precise groups (see Fig. 5), but they will 
become more clean. 

 
министр_магии, фаджа, визенгамотом, фадж, корнелиус, скримджер, министр, фаджу, визен-
гамот 
андромеда, друэлла, дорея, нарцисса, цисси, нарцисса_малфой, вальбурга, меда, нарси 
совы, филин, букля, буклю, сова, сову, хедвиг, сов 
блэка, блек, бродяга, сириус, блэку, блэк, сириус блэк, сири 
джордж, фред уизли, анджелина, фред, кэти белл, джорджуизли, кэти, близнец 
когтевран, гриффиндором, хаффлпафф, слизерин, пуффендуя, слизерином, рейвенкло, гриф-
финдор 
долохов, мальсибер, руди, рудольфус, антонин, рабастан, родольфус, эйвери 
кэрри, геланор, гарольд, гарриет, марьяна, эмили, гарри 
дурсли, мардж, петунья, эйлин, туни, вернон, дурслей 
косой аллея, зонко, косой переулок, косую аллея, лютный, хогсмид, флориш 

Figure 5: Biggest 10 communities detected by the Louvain algorithm  
with resolution parameter equal to 20 

Finally, the resolution parameter equal to 30 provides us with the best compromise between precision 
of the groups and the proportion of connections detected (see Fig. 6). As it can be seen on the picture, 
there are still groups which need further decomposition (such as the group with Harry which contains 
him and some marginal characters that are even not the part of Harry Potter original characters), but the 
fact that we can connect naming that are not connected in any way but semantically (such as Remus 
Lupin and Moony) make us consider this algorithm to have a pretty high precision and be at least a 
method of getting the baseline for more precise yet computationally complex models.   

 
совы, хедвиг, филин, букля, буклю, сова, сову, сов 
блэка, блек, бродяга, сириус, блэку, блэк, сириус блэк, сири 
кэрри, геланор, гарольд, гарриет, марьяна, эмили, гарри 
дурсли, мардж, петунья, эйлин, туни, вернон, дурслей 
хогсмид, косой аллея, зонко, косую аллея, лютный, флориш, косой переулок 
лунатик, люпина, люпин, рем, ремус люпин, ремус, римус 
долиш, аврорат, министерство, отдел, отдел тайн, министерство магия, аврор 
кричер, кикимер, добби, тилли, эльф, винки, домовик 
министр_магии, фадж, фаджа, скримджер, корнелиус, фаджу, министр 
лорду, лорд, воландеморт, милорд, волдеморт, лорд волдеморт, повелитель 

Figure 6: Biggest 10 communities detected by the Louvain algorithm  
with resolution parameter equal to 30 

5 Conclusion 
In this article, we present a method of anaphoric proper names detection in fictional texts using 

Word2Vec model and algorithms of community detection on graphs. This method allows grouping dif-
ferent namings of a single entity and can be useful as a part of preprocessing texts for further analysis 
such as building social networks or training neural models.  

We applied our method to a large collection of fanfiction texts devoted to the Universe of Harry Potter 
(22252 of texts, 336 mln of tokens) and obtained 109 groups consisting of 356 named entities, including 
characters names, nicknames, faculties, toponyms, and artifacts. 

Note that results need manual post-processing since there are some misplaced entities in communities. 
Our algorithm needs a pretty big collection of texts on the same topic since the Word2Vec model needs 
a big amount of contexts. Thus, it can be useful for preliminary processing of big textual collections as 
a builder of lists of anaphoric links.  
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One of the limitations of our method is it requires a large collection to train a Word2Vec model. It is 
hardly applied to a single masterpiece, even a huge one.  

In further research we are planning to formulate the requirements for a corpus more precise since it 
can be useful for understanding the ways of overcoming existing limitations. Also, the algorithm of 
contextualized detections should be invented. 
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