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Abstract

We study performance of BERT-like distributive semantic language models on anaphora resolution and related
tasks with the purpose of selecting a model for on-device inference. We have found that lean (narrow and deep)
language models provide the best balance of speed and quality for word-level tasks, and opensource1 RuLUKE-tiny
and RuLUKE-slim models we have trained. Both are significantly (over 27%) faster than models with comparable
accuracy. We hypothesise that the model depth may play a critical role for performance as, according to recent
findings each layer behaves as a gradient descent step in autoregressive setting.
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Аннотация
Изучена эффективность BERT-подобных моделей на задачах разрешения анафоры и смежных

задачах, чтобы выбрать модели для использования на оконечном устройстве. Выяснено, что под-
жарые (узкие и длинные) языковые модели дают оптимальное соотношение скорости и качества.
Представлены модели RuLUKE-tiny и RuLUKE-slim с открытым исходным кодом. Обе заметно
(более чем на 27%) быстрее, чем модели со сравнимой точностью. Предположено, что глуби-
на модели может играть решающую роль для ее эффективности, поскольку, согласно недавним
исследованиям, каждый слой ведет себя как шаг градиентного спуска в условиях авторегрессии.

Ключевые слова: BERT, LUKE, разрешение анафоры

1https://huggingface.co/vbolshakov/RuLUKE-tiny
https://huggingface.co/vbolshakov/RuLUKE-lean
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1 Introduction

1.1 Anaphora Resolution
Anaphora is the use of an expression (a pronoun or a noun phrase) whose interpretation depends upon
a preceding expression in context (its antecedent). Anaphora and cataphora (which is the use of an
expression that depends upon a postcedent expression) both are special cases of coreference, which
occurs when two or more expressions in a text refer to the same person or thing.

Anaphora resolution is the problem of resolving what a pronoun, or a noun phrase refers to. We
are specifically interested in resolving pronoun anaphora. It is a challenging task because it requires
good understanding of the context and the ability to recognize complex relationships between words
and phrases (Bolshakov and Mikhaylovskiy, 2023). However, this task is crucial in many applications
of NLP, such as information retrieval (Schmolz, 2015), question answering (Castagnola, 2002), opinion
mining (Jakob and Gurevych, 2010), and natural language understanding (Kilicoglu et al., 2016). In
addition, anaphora resolution can be used to improve the readability of a text, by replacing repeated
mentions of the same entity with a pronoun or other reference.

Recent anaphora and coreference resolution approaches typically use some fine-tuned pretrained lan-
guage model. As coreference resolution approaches are reviewed in detail recently by (Bolshakov and
Mikhaylovskiy, 2023), here we only list some specifically anaphora resolution work. The use of BERT-
like models for anaphora resolution was likely first suggested by (Joshi et al., 2019). At about the same
time (Mohan and Nair, 2019) suggested resolving ambiguous pronoun anaphorae using BERT and SVM,
and (Wang, 2019) suggested a BERT-based approach for gendered pronoun resolution. (Hou, 2020) sug-
gests an approach to bridging anaphora resolution via question ansvering based on SpanBERT (Joshi et
al., 2020).

1.2 Downscaling Transformers
A lot of recent research have focused on laws of and approaches to scaling transformer (Vaswani et al.,
2017) language models up (Hoffmann et al., 2022; Kaplan et al., 2020; Rae et al., 2021; Shoeybi et al.,
2019). Significantly less effort is being devoted to building smaller and more compute-efficient models
(Geiping and Goldstein, 2022). In this work we continue the latter line of research, with a focus on the
use of transformers in anaphora resolution.

1.3 Our contribution
Our contribution in this paper is threefold:

• We cast the anaphora resolution problem in a form similar to named entity recognition and linking
• We empirically study the performance of varied language model architectures and training ap-

proaches and found that lean (narrow and deep) language models provide the best balance of speed
and quality for word-level tasks,

• Finally, we opensource RuLUKE-tiny and RuLUKE-slim models we have trained that have better
performance on our downstream tasks than comparable models, and the larger of two models we
present performs on par with significantly larger models.

2 Anaphora Resolution Approach

For the anaphora resolution problem, we suggest an approach inspired by tagging named entities using
embeddings extracted from the transformer model (see, for example, (Arkhipov et al., 2019)). Instead
of named entity BIO tags (introduced by (Ramshaw and Marcus, 1995), see also (Nadeau and Sekine,
2007)) we suggest the following four tags:
0) 0 - the tag of all the words that are not in an anaphoric connection with the target pronoun;
1) AT_B - the tag of the first token included in the antecedent;
2) AT_C - the tag of subsequent tokens included in the antecedent;
3) AF_B - the tag of the first token of the anaphora.

We measure the accuracy of models with F1 metric applied to each token type, producing 4 separate
metrics. This approach allows to analyze the models’ performance in detail.

Bolshakov V., Kolobov R., Borisov E., Mikhaylovskiy N., Mukhtarova G.
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Figure 1: Architecture of the Anaphora Resolution model

Figure 1 depicts the suggested architecture for the anaphora resolution. Embeddings are generated
for the tokens of the source text. The embedding of the token of the anaphora pronoun is concatenated
with the embeddings of all tokens of the input text, and the result is passed to a fully-connected 2-layer
network. At the output of the model, the argmax layer returns the indices of the most likely tags for each
token. These tags are mapped to the words of the source text. In one pass over a window, the model finds
antecedents for only one pronoun.

The largest (in terms of the number of words) antecedent is selected for each continuous span detected:
"Elizaveta Petrovna Kalinina is the CEO of the company. Liza is responsible for a huge number of
employees. Every day she...". The case and number of the antecedent are agreed with the pronoun. In
cases where there were opening brackets/quotes in the antecedent, but their closing versions were not
included, they are added.

3 Training approaches

We have benchmarked several approaches to training the models:

• Distillation
• Pretraining using SpanBERT approach (Joshi et al., 2020)
• Pretraining using LUKE approach (Yamada et al., 2020)

3

Scaled Down Lean BERT-like Language Models for Anaphora Resolution and Beyond



3.1 Distillation

We use knowledge distillation (Hinton et al., 2015) as a basic approach to training the models, following
(Dale, 2021b). Knowledge distillation is the process of transferring knowledge from a large model
(teacher) to a smaller one (student) (Gou et al., 2021).

We train bilingual English+Russian models and use two training sets:
• 2.5 million parallel English-Russian sentences collected from Yandex.Translate (Yan, 2022), OPUS-

100 (Zhang et al., 2020) and Tatoeba (Tat, 2022; Tiedemann, 2012) corpora.
• 6.5 million sentences in Russian from ruswiki 2021, rusnews 2020 and rusweb 2019 collections

from Leipzig corpus (Goldhahn et al., 2012) and Russian sentence pairs from XNLI (Conneau et
al., 2018).

We use several losses and teachers. For the parallel corpus we, similarly to Dale (Dale, 2021b):
• distill CLS tokens, bringing their different projections closer to RuBERT (Kuratov and Arkhipov,

2019), LaBSE (Feng et al., 2022) and Laser (Artetxe and Schwenk, 2019) embeddings;
• distill the probability distribution of LaBSE (Feng et al., 2022) output tokens with MLM distilla-

tion loss, using the Kullback-Leibler divergence loss between mapped vocabularies of student and
teacher models;

• minimize the whole-word MLM loss (Devlin et al., 2019) for English and Russian languages;
• minimize the translation ranking loss, as in LaBSE (Feng et al., 2022);
For the Russian corpus we
• minimize the per-token MLM loss with rubert-base-cased-sentence (Kuratov and Arkhipov, 2019);
• minimize the whole-word MLM loss to LABSE (Feng et al., 2022);
• minimize NLI loss.
We train models in three stages using Cosine Annealing with Warm Restarts on the first two stages.

The details of the parameters on these stages are listed in Table 1. We have trained two mod-
els using this approach - one with rubert-tiny architecture but with extended dictionary (we call it
distilRuBert-tiny) and the other with twice as much layers (we call it distilRuBert-lean). Input and
output embeddings weights for these new models were partially copied from cointegrated/rubert-tiny2
and cointegrated/LaBSE-en-ru respectively. For distilRuBert-tiny we used cointegrated/rubert-tiny2 as a
starting checkpoint.

Stage 1 Stage 2 Stage 3
teachers all all all but rubert-base-cased-sentence
steps 400000 800000 1100000
batch size for bilingual pairs 16 32 36
batch size for Russian texts 8 16 12
batch size for NLI 8 16 24
accumulation steps 4 4 1
learning rate 1e-5 to 0 1e-5 to 1e-6 1e-5

Table 1: Distillation stages description

3.2 Pretraining using SpanBERT approach

SpanBERT (Joshi et al., 2020) extends BERT by
• masking contiguous random spans, rather than random tokens, and
• training the span boundary representations to predict the entire content of the masked span, without

relying on the individual token representations within it.
We only use the first option of these two. We have trained a model with rubert-tiny architecture using

this approach, and refer to it distilRuSpanBert-tiny in this paper. We used cointegrated/rubert-tiny2 as a
starting checkpoint.

Bolshakov V., Kolobov R., Borisov E., Mikhaylovskiy N., Mukhtarova G.
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Model 𝑉𝑉 𝐸𝐸 𝐻𝐻 𝐿𝐿 𝑁𝑁

DeepPavlov/distilrubert-small-cased-conversational 119547 768 3072 2 106.4M
DeepPavlov/distilrubert-tiny-cased-conversational-v1 30522 264 792 3 10.3M
DeepPavlov/distilrubert-tiny-cased-conversational-5k 5031 264 792 3 3.6M
cointegrated/LaBSE-en-ru 55083 768 3072 12 127M
cointegrated/rubert-tiny2 83828 312 600 3 29.1M
cointegrated/rubert-tiny 29564 312 600 3 11.8M
(ours) distilRuBert-lean 55083 312 936 6 23.3M
(ours) distilRuBert-tiny 101520 312 600 3 34.3M
(ours) RuLUKE-tiny 83828 312 600 3 158.8M
(ours) RuLUKE-lean 55083 312 936 6 153.3M
(ours) distilRuSpanBert-tiny 101525 312 600 3 34.3M

Table 2: Parameters of models

3.3 Pretraining using LUKE approach
LUKE (Yamada et al., 2020) extends BERT by introducing:

• a new pretraining task that involves predicting randomly masked words and entities in a large entity-
annotated corpus retrieved from Wikipedia

• an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the
transformer, and considers the types of tokens (words or entities) when computing attention scores

We have trained two models using this approach - one with rubert-tiny2 architecture (we call
it RuLUKE-tiny) and the other with distilRuBert-lean architecture (we call it RuLUKE-lean). For
RuLUKE-tiny and RuLUKE-lean we used cointegrated/rubert-tiny2 and our distilRuBert-lean respect-
ively as backbone transformers and starting checkpoints for further training. According to LUKE (Ya-
mada et al., 2020), each model has additional entity vocabulary with top 500k entities from dump of Rus-
sian Wikipedia, that is why the disk size and the number of parameters of RuLUKE-tiny and RuLUKE-
lean are larger compared to other models.

4 Experiments and results

4.1 Tasks and Datasets
We test the efficiency of the anaphora resolution approach overall and of each model in particular on the
anaphora resolution subset of RuCoCo dataset (Dobrovolskii et al., 2022). To produce this subset we
have sampled examples where one of the coreferences is a pronoun.

4.2 BERT-like Models
For our study, we selected small and medium sized BERT-like models that showed promising results in
NLP tasks for the Russian language (Kolesnikova et al., 2022), (Dale, 2021b), based on the rating from
Dale (Dale, 2022) and integrated well with spaCy (Honnibal and Montani, 2017). The size, performance
and efficiency of BERT-like models depends on model architecture parameters and training approach.
We treat the latter in Section 3. The key architectural parameters for BERT are:

• 𝐿𝐿 - the number of hidden layers;
• 𝐻𝐻 - the size of intermediate layer embeddings;
• 𝐸𝐸 - the size of the output embedding;
• 𝑉𝑉 - the size of vocabulary;
• 𝑁𝑁 - the number of parameters (which is a function of the above parameters)
The Table 2 lists the architectural parameters of the key models we compare to and our models.

4.3 Inference Speed
We have benchmarked the performance of CPU inference of typical and potential architectures. The tests
were run on the entire dataset. Time was measured in ms/sentence, mean of 3 runs, 1 loop each on an
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Intel(R) Core(TM) i5-10400, 2.90GHz processor based computer with 6 cores. Batch size was set to 1,
and torch.utils.data.DataLoader used 𝑛𝑛𝑛𝑛𝑛𝑛_𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 0. The results are listed in Table 3. It is easy
to see that the performance only slightly depends on the vocabulary size and intermediate embedding
dimension, grows linearly with the number of layers and slower - with the embedding dimension.

𝐸𝐸 = 264 𝐸𝐸 = 528 𝐸𝐸 = 768

L 3 6 9 12 3 6 9 12 3 6 9 12
V =
29
564

𝐻𝐻 = 𝐸𝐸 * 2 10.7 19.4 28.5 37.2 15.5 29.5 43.0 56.7 23.9 45.9 67.9 90.0
𝐻𝐻 = 𝐸𝐸 * 3 11.3 20.6 30.2 39.3 17.1 32.3 47.7 62.8 28.5 54.9 82.7 108.9
𝐻𝐻 = 𝐸𝐸 * 4 11.4 21.1 31.0 40.7 20.3 39.1 61.8 77.6 33.8 65.0 96.4 127.7

V =
83
828

𝐻𝐻 = 𝐸𝐸 * 2 11.8 21.5 30.9 40.6 16.2 30.6 45.2 59.6 24.6 47.1 69.8 95.1
𝐻𝐻 = 𝐸𝐸 * 3 11.9 22.2 32.5 42.9 17.9 33.9 50.7 67.2 29.7 57.6 85.5 113.4
𝐻𝐻 = 𝐸𝐸 * 4 12.3 22.8 33.3 43.8 21.2 40.7 60.2 79.9 35.0 68.1 101.1 133.7

V =
119
547

𝐻𝐻 = 𝐸𝐸 * 2 11.8 21.8 32.1 41.9 16.5 31.9 49.1 61.7 24.5 46.8 69.1 92.1
𝐻𝐻 = 𝐸𝐸 * 3 12.5 23.1 33.4 43.8 18.1 34.3 51.6 66.8 28.8 55.7 82.7 109.8
𝐻𝐻 = 𝐸𝐸 * 4 12.6 23.3 35.2 44.5 21.2 40.8 60.1 79.6 34.0 66.0 98.2 130.3

Table 3: Dependence of performance (ms/sentence) on model architecture parameters 𝐿𝐿 - the number of
hidden layers, 𝐻𝐻 - the size of intermediate layer embeddings, 𝐸𝐸 - the size of the output embedding, 𝑉𝑉 -
the size of vocabulary

Table 4 shows CPU inference speed of discussed models on two benchmarks:
• 𝐵𝐵𝑤𝑤𝑛𝑛𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑤𝑤𝑤𝑤1 - is the CPU speed task from (Dale, 2021a)
• 𝐵𝐵𝑤𝑤𝑛𝑛𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑤𝑤𝑤𝑤2 - shows the performance of models on anaphora resolution task when running on

CPU using the same data as in Section 4.1 and architecture as in Section 2
For both benchmarks we report mean inference time in milliseconds per sentence and standard devi-

ation, collected on 3 runs.

Model 𝐵𝐵𝑤𝑤𝑛𝑛𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑤𝑤𝑤𝑤1 𝐵𝐵𝑤𝑤𝑛𝑛𝐵𝐵𝐵𝑛𝑛𝐵𝐵𝑤𝑤𝑤𝑤2

DeepPavlov/distilrubert-small-cased-conversational 5.22 ± 0.13 28.15 ± 0.67
DeepPavlov/distilrubert-tiny-cased-conversational-v1 2.87 ± 0.06 15.92 ± 0.76
DeepPavlov/distilrubert-tiny-cased-conversational-5k 3.18 ± 0.07 15.36 ± 0.63
cointegrated/LaBSE-en-ru 28.10 ± 0.55 134.07 ± 1.20
cointegrated/rubert-tiny2 3.09 ± 0.12 15.70 ± 0.08
cointegrated/rubert-tiny 3.23 ± 0.09 14.86 ± 0.07
(ours) distilRuBert-lean 6.12 ± 0.09 20.73 ± 0.53
(ours) distilRuBert-tiny 3.23 ± 0.07 12.40 ± 0.47
(ours) RuLUKE-tiny 3.31 ± 0.13 11.79 ± 0.57
(ours) RuLUKE-lean 6.12 ± 0.09 22.01 ± 1.18
(ours) distilRuSpanBert-tiny 3.38 ± 0.18 12.29 ± 0.17

Table 4: CPU inference speed of models

4.4 Accuracy
We list the results of accuracy evaluation in two groups - tiny (Table ??) and larger (Table 5)models. The
results for LaBSE-en-ru are listed with larger models for comparison. The best results in each category
are highlighted in bold.

5 Conclusion

Popular tiny Russian BERT models are trained primarily with sentence-related tasks in mind. Thus their
accuracy on word-related tasks is significantly worse than on sentence-related tasks. It is hard to fine-

Bolshakov V., Kolobov R., Borisov E., Mikhaylovskiy N., Mukhtarova G.
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Model AF_B F1 AT_B F1 AT_C F1 0 F1 Avg F1 Time
(ours) RuLUKE-tiny 0.966 0.372 0.484 0.509 0.583 11.79
(ours) distilRuSpanBert-tiny 0.973 0.290 0.438 0.471 0.543 12.29
(ours) distilRuBert-tiny 0.974 0.315 0.430 0.458 0.544 12.40
cointegrated/rubert-tiny 0.974 0.327 0.416 0.447 0.541 14.86
DeepPavlov/
distilrubert-tiny-cased-conversational-5k 0.972 0.333 0.425 0.461 0.548 15.36
cointegrated/rubert-tiny2 0.964 0.318 0.437 0.468 0.547 15.70
DeepPavlov/
distilrubert-tiny-cased-conversational-v1 0.972 0.380 0.473 0.511 0.584 15.92
distilRuBert-lean 0.975 0.422 0.490 0.521 0.602 20.73
RuLUKE-lean 0.975 0.411 0.500 0.528 0.604 22.01
DeepPavlov/
distilrubert-small-cased-conversational 0.972 0.382 0.499 0.541 0.599 28.15
cointegrated/LaBSE-en-ru 0.987 0.713 0.770 0.822 0.823 134.07

Table 5: Accuracy and speed of the models

tune/distill such models to achieve better accuracy on word-related tasks than model trained from scratch
with word-related tasks in mind. LUKE improves performance on word-related tasks to be on par with
the best similarly-sized models, but but is much faster so RuLUKE-tiny is 35% faster than DeepPavlov/
distilrubert-tiny-cased-conversational-v1 that has about the same accuracy. SpanBERT training does not
improve performance on anaphora resolution task.

For lean models, the accuracy improvement achieved by LUKE training is more noticeable, and the
speedup compared to DeepPavlov/ distilrubert-small-cased-conversational is 28%. Still, 6 layers seems
to be an inadequate number to match the performance of full-fledged, 12-layer models such as LaBSE.
We believe this might be connected with the recent finding that transformers learn in-context by gradi-
ent descent in the domain of autoregressive problems (von Oswald et al., 2022). In the latter setting
each layer behaves as a gradient descent step. While our formulation of anaphora resolution task is not
autoregressive, a similar mechanism may also be present. This is a matter of the future research.
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