
Improving Part-of-Speech Tagging
via Multi-Task Learning

and Character-Level Word Representations

Daniil Anastasyev, Ilya Gusev, Eugene Indenbom

ABBYY, Moscow
MIPT, Moscow

Dialogue
24rd International Conference on Computational Linguistics

Moscow, RSUH, 2st June, 2018



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Introduction

The morphological analysis is a key step in many NLP pipelines.

The results of morphological analysis are used in syntactic and
semantic parsing in ABBYY Compreno.
Accurate morphological analyser can highly increase speed of the
syntactic parsing by reducing the number of obtained hypotheses.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Introduction

The morphological analysis is a key step in many NLP pipelines.
The results of morphological analysis are used in syntactic and
semantic parsing in ABBYY Compreno.

Accurate morphological analyser can highly increase speed of the
syntactic parsing by reducing the number of obtained hypotheses.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Introduction

The morphological analysis is a key step in many NLP pipelines.
The results of morphological analysis are used in syntactic and
semantic parsing in ABBYY Compreno.
Accurate morphological analyser can highly increase speed of the
syntactic parsing by reducing the number of obtained hypotheses.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Task description

Basically, we try to predict the POS tag for each word in the sentence.

У двери стоял стол секретарши , · · ·
NOUN

Animacy=Inan
Case=Gen

Gender=Fem
Number=Sing

The interviews took place two years ago .
NN

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

POS tags’ ambiguity

The task cannot be solved without taking the word’s context into
account:

she hated lies

PRP
VBD
VBN
JJ

NNS
VBZ

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Work overview

Every machine learning model relies on the following
components:

1 Data;
2 Features extracted from the data;
3 Loss function.

We used BiLSTM POS tagger as a strong baseline.
We aimed to improve it by changes in these components.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Work overview

Every machine learning model relies on the following
components:

1 Data;

2 Features extracted from the data;
3 Loss function.

We used BiLSTM POS tagger as a strong baseline.
We aimed to improve it by changes in these components.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Work overview

Every machine learning model relies on the following
components:

1 Data;
2 Features extracted from the data;

3 Loss function.

We used BiLSTM POS tagger as a strong baseline.
We aimed to improve it by changes in these components.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Work overview

Every machine learning model relies on the following
components:

1 Data;
2 Features extracted from the data;
3 Loss function.

We used BiLSTM POS tagger as a strong baseline.
We aimed to improve it by changes in these components.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Work overview

Every machine learning model relies on the following
components:

1 Data;
2 Features extracted from the data;
3 Loss function.

We used BiLSTM POS tagger as a strong baseline.

We aimed to improve it by changes in these components.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Work overview

Every machine learning model relies on the following
components:

1 Data;
2 Features extracted from the data;
3 Loss function.

We used BiLSTM POS tagger as a strong baseline.
We aimed to improve it by changes in these components.

Daniil Anastasyev Improving Part-of-Speech Tagging



Baseline model

BiLSTMs are proven to
be very effective for
POS tagging.

Tag’s prediction is
conditioned on the
whole sentence.



Baseline model

BiLSTMs are proven to
be very effective for
POS tagging.
Tag’s prediction is
conditioned on the
whole sentence.



Result model

In our result model we
experimented with:

1 Different types of
character-level word
embeddings;

2 Additional grammemes
embeddings;

3 Auxiliary loss
functions;

4 Extra data for model’s
pretraining.



Result model

In our result model we
experimented with:

1 Different types of
character-level word
embeddings;

2 Additional grammemes
embeddings;

3 Auxiliary loss
functions;

4 Extra data for model’s
pretraining.



Result model

In our result model we
experimented with:

1 Different types of
character-level word
embeddings;

2 Additional grammemes
embeddings;

3 Auxiliary loss
functions;

4 Extra data for model’s
pretraining.



Result model

In our result model we
experimented with:

1 Different types of
character-level word
embeddings;

2 Additional grammemes
embeddings;

3 Auxiliary loss
functions;

4 Extra data for model’s
pretraining.



Result model

In our result model we
experimented with:

1 Different types of
character-level word
embeddings;

2 Additional grammemes
embeddings;

3 Auxiliary loss
functions;

4 Extra data for model’s
pretraining.



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Introduction
Task description
Work overview
Datasets

Datasets

We compared our results on three datasets:
1 Penn Treebank – English dataset, standard dataset for English

models’ evaluation;
2 Syntagrus – Russian dataset with Universal Dependencies 2.1

tagset;
3 MorphoRuEval – Russian dataset with Universal Dependencies

tagset.

Dataset Train Dev Test #classes
PTB 912 344 131 768 129 654 45
Syntagrus 871 082 118 630 117 470 721
MorphoRuEval 977 567 108 581 19 560 302

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Word embeddings

Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.

However, word embeddings’ matrices are typically very big: 300
dimensional vectors for 50 000 words have 15 000 000 parameters.
Another disadvantage of word embeddings is their inability to
process out-of-vocabulary words: we can represent them only as a
single unknown word vector.
To fight these problems we used character-level word embeddings.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Word embeddings

Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.
However, word embeddings’ matrices are typically very big: 300
dimensional vectors for 50 000 words have 15 000 000 parameters.

Another disadvantage of word embeddings is their inability to
process out-of-vocabulary words: we can represent them only as a
single unknown word vector.
To fight these problems we used character-level word embeddings.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Word embeddings

Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.
However, word embeddings’ matrices are typically very big: 300
dimensional vectors for 50 000 words have 15 000 000 parameters.
Another disadvantage of word embeddings is their inability to
process out-of-vocabulary words: we can represent them only as a
single unknown word vector.

To fight these problems we used character-level word embeddings.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Word embeddings

Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.
However, word embeddings’ matrices are typically very big: 300
dimensional vectors for 50 000 words have 15 000 000 parameters.
Another disadvantage of word embeddings is their inability to
process out-of-vocabulary words: we can represent them only as a
single unknown word vector.
To fight these problems we used character-level word embeddings.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

BiLSTM character-level embeddings

Character-level BiLSTM (Char
BiLSTM) is one of the standard
ways to build word embeddings.

Processes characters one by one.
Handles words with arbitrary
lengths.
Cannot be efficiently parallelized.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

BiLSTM character-level embeddings

Character-level BiLSTM (Char
BiLSTM) is one of the standard
ways to build word embeddings.
Processes characters one by one.

Handles words with arbitrary
lengths.
Cannot be efficiently parallelized.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

BiLSTM character-level embeddings

Character-level BiLSTM (Char
BiLSTM) is one of the standard
ways to build word embeddings.
Processes characters one by one.
Handles words with arbitrary
lengths.

Cannot be efficiently parallelized.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

BiLSTM character-level embeddings

Character-level BiLSTM (Char
BiLSTM) is one of the standard
ways to build word embeddings.
Processes characters one by one.
Handles words with arbitrary
lengths.
Cannot be efficiently parallelized.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Feed-forward character-level embeddings

Feed-forward character-level
(Char FF) embeddings is our
alternative to Char BiLSTM.

Processes concatenation of
characters’ embeddings.
Handles words with fixed
lengths (we used 11-13 letters
restriction).
Can be computed much faster
than BiLSTM.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Feed-forward character-level embeddings

Feed-forward character-level
(Char FF) embeddings is our
alternative to Char BiLSTM.
Processes concatenation of
characters’ embeddings.

Handles words with fixed
lengths (we used 11-13 letters
restriction).
Can be computed much faster
than BiLSTM.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Feed-forward character-level embeddings

Feed-forward character-level
(Char FF) embeddings is our
alternative to Char BiLSTM.
Processes concatenation of
characters’ embeddings.
Handles words with fixed
lengths (we used 11-13 letters
restriction).

Can be computed much faster
than BiLSTM.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Feed-forward character-level embeddings

Feed-forward character-level
(Char FF) embeddings is our
alternative to Char BiLSTM.
Processes concatenation of
characters’ embeddings.
Handles words with fixed
lengths (we used 11-13 letters
restriction).
Can be computed much faster
than BiLSTM.

Daniil Anastasyev Improving Part-of-Speech Tagging



Character-level embeddings comparison

These two variants of
character-level functions
obtained approximately equal
results.
However, Char BiLSTM needs
twice as many epochs to
converge and it works slower.

Dataset Char BiLSTM Char FF
PTB 97.02% / 96.98% 97.32% / 97.26%
Syntagrus 95.23% / 95.39% 94.98% / 95.16%
MorphoRuEval 96.48% / 94.69% 96.68% / 94.63%



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Character-level embeddings’ pretraining

We used pretrained word vectors to
incorporate useful information encoded in
them into our character-level embeddings.

We trained an autoencoder-like network to
predict word’s index by its letters.
The output layer was initialized by the first
20 thousand pretrained vectors.
The crossentropy loss forced embedding
predicted by the character-level function to
be similar to the corresponding vector and
less similar to all other words’ vectors.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Character-level embeddings’ pretraining

We used pretrained word vectors to
incorporate useful information encoded in
them into our character-level embeddings.
We trained an autoencoder-like network to
predict word’s index by its letters.

The output layer was initialized by the first
20 thousand pretrained vectors.
The crossentropy loss forced embedding
predicted by the character-level function to
be similar to the corresponding vector and
less similar to all other words’ vectors.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Character-level embeddings’ pretraining

We used pretrained word vectors to
incorporate useful information encoded in
them into our character-level embeddings.
We trained an autoencoder-like network to
predict word’s index by its letters.
The output layer was initialized by the first
20 thousand pretrained vectors.

The crossentropy loss forced embedding
predicted by the character-level function to
be similar to the corresponding vector and
less similar to all other words’ vectors.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Character-level embeddings’ pretraining

We used pretrained word vectors to
incorporate useful information encoded in
them into our character-level embeddings.
We trained an autoencoder-like network to
predict word’s index by its letters.
The output layer was initialized by the first
20 thousand pretrained vectors.
The crossentropy loss forced embedding
predicted by the character-level function to
be similar to the corresponding vector and
less similar to all other words’ vectors.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Character-level embeddings’ pretraining

The pretrained character-level embeddings were trained further
with the whole model.

The model with pretrained embeddings achieved much higher
quality during the first few epochs.
The pretraining process led to 4-5% error rate reduction (ERR)
on Russian datasets and 2-3% ERR on PTB.

Dataset Char FF Char FF (Pretrained)
PTB 97.32% / 97.26% 97.40% / 97.31%
Syntagrus 94.98% / 95.16% 95.22% / 95.36%
MorphoRuEval 96.68% / 94.63% 96.88% / 94.63%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Character-level embeddings’ pretraining

The pretrained character-level embeddings were trained further
with the whole model.
The model with pretrained embeddings achieved much higher
quality during the first few epochs.

The pretraining process led to 4-5% error rate reduction (ERR)
on Russian datasets and 2-3% ERR on PTB.

Dataset Char FF Char FF (Pretrained)
PTB 97.32% / 97.26% 97.40% / 97.31%
Syntagrus 94.98% / 95.16% 95.22% / 95.36%
MorphoRuEval 96.68% / 94.63% 96.88% / 94.63%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Word embeddings
BiLSTM character-level embeddings
Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

Character-level embeddings’ pretraining

The pretrained character-level embeddings were trained further
with the whole model.
The model with pretrained embeddings achieved much higher
quality during the first few epochs.
The pretraining process led to 4-5% error rate reduction (ERR)
on Russian datasets and 2-3% ERR on PTB.

Dataset Char FF Char FF (Pretrained)
PTB 97.32% / 97.26% 97.40% / 97.31%
Syntagrus 94.98% / 95.16% 95.22% / 95.36%
MorphoRuEval 96.68% / 94.63% 96.88% / 94.63%

Daniil Anastasyev Improving Part-of-Speech Tagging



Grammemes embedding

Word’s form only cannot be a good
evidence to its syntactic or semantic
value (e.g., «land» vs «laud» or
«taxes» vs «takes»).

We used dictionary information to
improve the embeddings’ quality.
We estimated the probability of each
possible grammeme using the word
forms’ probabilities.

E.g., noun form of the word «cut»
has frequency equal to 2.84 · 10−5,
while the verb form has frequency
8.75 · 10−5. Therefore,
P(noun) ≈ 0.26.

We used an additional dense layer to
obtain some relationships between
grammemes.



Grammemes embedding

Word’s form only cannot be a good
evidence to its syntactic or semantic
value (e.g., «land» vs «laud» or
«taxes» vs «takes»).
We used dictionary information to
improve the embeddings’ quality.

We estimated the probability of each
possible grammeme using the word
forms’ probabilities.

E.g., noun form of the word «cut»
has frequency equal to 2.84 · 10−5,
while the verb form has frequency
8.75 · 10−5. Therefore,
P(noun) ≈ 0.26.

We used an additional dense layer to
obtain some relationships between
grammemes.



Grammemes embedding

Word’s form only cannot be a good
evidence to its syntactic or semantic
value (e.g., «land» vs «laud» or
«taxes» vs «takes»).
We used dictionary information to
improve the embeddings’ quality.
We estimated the probability of each
possible grammeme using the word
forms’ probabilities.

E.g., noun form of the word «cut»
has frequency equal to 2.84 · 10−5,
while the verb form has frequency
8.75 · 10−5. Therefore,
P(noun) ≈ 0.26.

We used an additional dense layer to
obtain some relationships between
grammemes.



Grammemes embedding

Word’s form only cannot be a good
evidence to its syntactic or semantic
value (e.g., «land» vs «laud» or
«taxes» vs «takes»).
We used dictionary information to
improve the embeddings’ quality.
We estimated the probability of each
possible grammeme using the word
forms’ probabilities.

E.g., noun form of the word «cut»
has frequency equal to 2.84 · 10−5,
while the verb form has frequency
8.75 · 10−5. Therefore,
P(noun) ≈ 0.26.

We used an additional dense layer to
obtain some relationships between
grammemes.



Grammemes embedding

Word’s form only cannot be a good
evidence to its syntactic or semantic
value (e.g., «land» vs «laud» or
«taxes» vs «takes»).
We used dictionary information to
improve the embeddings’ quality.
We estimated the probability of each
possible grammeme using the word
forms’ probabilities.

E.g., noun form of the word «cut»
has frequency equal to 2.84 · 10−5,
while the verb form has frequency
8.75 · 10−5. Therefore,
P(noun) ≈ 0.26.

We used an additional dense layer to
obtain some relationships between
grammemes.



Grammemes embedding

On Russian datasets the
grammemes embeddings gave
up to 35% ERR.
On English dataset the
improvement seems marginal.

Dataset Char FF (Pretrained) + Grammemes
PTB 97.40% / 97.31% 97.43% / 97.30%
Syntagrus 95.22% / 95.36% 96.77% / 97.00%
Gikrya 96.88% / 94.63% 98.07% / 95.36%



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

Multi-task learning

Multi-task learning is a known way to improve model’s quality
and make it more robust.

Model is optimized by both main loss function and some
auxiliary losses.
It learns to produce more general representations from the data.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

Multi-task learning

Multi-task learning is a known way to improve model’s quality
and make it more robust.
Model is optimized by both main loss function and some
auxiliary losses.

It learns to produce more general representations from the data.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

Multi-task learning

Multi-task learning is a known way to improve model’s quality
and make it more robust.
Model is optimized by both main loss function and some
auxiliary losses.
It learns to produce more general representations from the data.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

Language models’ auxiliary losses

We used language models auxiliary losses to improve the model’s
quality.

Word language model additionally tries to predict the next word
using Forward LSTM and the previous one with Backward
LSTM:

Forward LSTM(she, hated) ∼ tag(hated)
lies

POS language model additionally tries to predict the next and
the previous words’ tags using Forward LSTM and Backward
LSTM correspondingly:

Forward LSTM(she, hated) ∼ tag(hated)
tag(lies)

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

Language models’ auxiliary losses

We used language models auxiliary losses to improve the model’s
quality.
Word language model additionally tries to predict the next word
using Forward LSTM and the previous one with Backward
LSTM:

Forward LSTM(she, hated) ∼ tag(hated)
lies

POS language model additionally tries to predict the next and
the previous words’ tags using Forward LSTM and Backward
LSTM correspondingly:

Forward LSTM(she, hated) ∼ tag(hated)
tag(lies)

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

Language models’ auxiliary losses

We used language models auxiliary losses to improve the model’s
quality.
Word language model additionally tries to predict the next word
using Forward LSTM and the previous one with Backward
LSTM:

Forward LSTM(she, hated) ∼ tag(hated)
lies

POS language model additionally tries to predict the next and
the previous words’ tags using Forward LSTM and Backward
LSTM correspondingly:

Forward LSTM(she, hated) ∼ tag(hated)
tag(lies)

Daniil Anastasyev Improving Part-of-Speech Tagging



Language models’ auxiliary losses

On PTB both loss variants led
to equal improvements.
The POS LM loss gave
considerably better results on
Russian datasets.
Error reduction rate on PTB
and Syntagrus was about
7-8%, while on MorphoRuEval
testset we achieved 36% ERR.

Dataset Previous Model + Word LM + POS LM
PTB 97.43% / 97.30% 97.57% / 97.49% 97.57% / 97.49%
Syntagrus 96.77% / 97.00% 96.69% / 96.96% 96.97% / 97.24%
MorphoRuEval 98.07% / 94.85% 97.91% / 96.30% 98.12% / 96.72%



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

CRF output layer

CRF layer usually helps to improve the quality of sequence
labeling models.

In our case, we were able to achieve a modest improvement only
on PTB dataset.

Dataset Previous Model + CRF
PTB 97.57% / 97.49% 97.60% / 97.51%
Syntagrus 96.97% / 97.24% 96.72% / 96.97%
MorphoRuEval 98.12% / 96.72% 98.07% / 96.65%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Multi-task learning
CRF output layer

CRF output layer

CRF layer usually helps to improve the quality of sequence
labeling models.
In our case, we were able to achieve a modest improvement only
on PTB dataset.

Dataset Previous Model + CRF
PTB 97.57% / 97.49% 97.60% / 97.51%
Syntagrus 96.97% / 97.24% 96.72% / 96.97%
MorphoRuEval 98.12% / 96.72% 98.07% / 96.65%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Transfer learning

Transfer learning is a popular way to increase model’s quality.

Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
We performed transfer learning to Syntagrus from two datasets:

1 MorphoRuEval dataset with similar UD based tagset;
2 Large (10 million tokens) Compreno tagged dataset with different

tagset.

Both pretrained models achieved approximatelly similar results
and showed 38-39.5% ERR in comparison to our best previous
model.

Model Accuracy
Best previous 96.97% / 97.24%
MorphoRuEval pretrained 98.21% / 98.33%
Compreno pretrained 98.18% / 98.29%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Transfer learning

Transfer learning is a popular way to increase model’s quality.
Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.

We performed transfer learning to Syntagrus from two datasets:

1 MorphoRuEval dataset with similar UD based tagset;
2 Large (10 million tokens) Compreno tagged dataset with different

tagset.

Both pretrained models achieved approximatelly similar results
and showed 38-39.5% ERR in comparison to our best previous
model.

Model Accuracy
Best previous 96.97% / 97.24%
MorphoRuEval pretrained 98.21% / 98.33%
Compreno pretrained 98.18% / 98.29%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Transfer learning

Transfer learning is a popular way to increase model’s quality.
Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
We performed transfer learning to Syntagrus from two datasets:

1 MorphoRuEval dataset with similar UD based tagset;
2 Large (10 million tokens) Compreno tagged dataset with different

tagset.
Both pretrained models achieved approximatelly similar results
and showed 38-39.5% ERR in comparison to our best previous
model.

Model Accuracy
Best previous 96.97% / 97.24%
MorphoRuEval pretrained 98.21% / 98.33%
Compreno pretrained 98.18% / 98.29%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Transfer learning

Transfer learning is a popular way to increase model’s quality.
Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
We performed transfer learning to Syntagrus from two datasets:

1 MorphoRuEval dataset with similar UD based tagset;

2 Large (10 million tokens) Compreno tagged dataset with different
tagset.

Both pretrained models achieved approximatelly similar results
and showed 38-39.5% ERR in comparison to our best previous
model.

Model Accuracy
Best previous 96.97% / 97.24%
MorphoRuEval pretrained 98.21% / 98.33%
Compreno pretrained 98.18% / 98.29%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Transfer learning

Transfer learning is a popular way to increase model’s quality.
Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
We performed transfer learning to Syntagrus from two datasets:

1 MorphoRuEval dataset with similar UD based tagset;
2 Large (10 million tokens) Compreno tagged dataset with different

tagset.

Both pretrained models achieved approximatelly similar results
and showed 38-39.5% ERR in comparison to our best previous
model.

Model Accuracy
Best previous 96.97% / 97.24%
MorphoRuEval pretrained 98.21% / 98.33%
Compreno pretrained 98.18% / 98.29%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Transfer learning

Transfer learning is a popular way to increase model’s quality.
Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
We performed transfer learning to Syntagrus from two datasets:

1 MorphoRuEval dataset with similar UD based tagset;
2 Large (10 million tokens) Compreno tagged dataset with different

tagset.
Both pretrained models achieved approximatelly similar results
and showed 38-39.5% ERR in comparison to our best previous
model.

Model Accuracy
Best previous 96.97% / 97.24%
MorphoRuEval pretrained 98.21% / 98.33%
Compreno pretrained 98.18% / 98.29%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Comparison with others results on PTB
Comparison with others results on MorphoRuEval

Comparison with others results on PTB

Our result is worse than the best
known result on PTB dataset.
However, this result achieved with a
model without word embeddings,
which means that our model uses
much smaller number of parameters.

Tagger Test Acc
Manning (2011) 97,32%
Søgaard (2011) 97,50%
Santos (2014) 97,32%
Ling (2015) 97,78%
Ma (2016) 97,55%
Choi (2016) 97,64%
Rei (2017) 97,43%
This work 97,51%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Comparison with others results on PTB
Comparison with others results on MorphoRuEval

Comparison with others results on MorphoRuEval

Our result is worse than the best known result on MorphoRuEval
dataset.
However, this result is achieved without pretraining and usage of
word embeddings.

Tagger Literature News VKontakte
Sorokin, et al 94.16% 93.71% 92.29%
Anastasyev, et al 95.30% 97.54% 95.15%
Anastasyev, with pretrain 97.45% 97.37% 96.52%
This work 96.46% 97.97% 95.64%

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Features

Additional losses
Additional data

Comparison
Summary

Summary

We proposed a number of improvements to the baseline BiLSTM
model.

We describe an alternative character-level function which can be
computed faster than BiLSTM and shows better performance.
We showed a way to pretrain character-level embeddings with
standard word embeddings.
We introduced a novel POS LM auxiliary loss.
We applied transfer learning to highly increase quality of the
model.
An open-source version of our model is available on
https://github.com/IlyaGusev/rnnmorph

Daniil Anastasyev Improving Part-of-Speech Tagging

https://github.com/IlyaGusev/rnnmorph


Introduction
Features

Additional losses
Additional data

Comparison
Summary

Summary

We proposed a number of improvements to the baseline BiLSTM
model.
We describe an alternative character-level function which can be
computed faster than BiLSTM and shows better performance.

We showed a way to pretrain character-level embeddings with
standard word embeddings.
We introduced a novel POS LM auxiliary loss.
We applied transfer learning to highly increase quality of the
model.
An open-source version of our model is available on
https://github.com/IlyaGusev/rnnmorph

Daniil Anastasyev Improving Part-of-Speech Tagging

https://github.com/IlyaGusev/rnnmorph


Introduction
Features

Additional losses
Additional data

Comparison
Summary

Summary

We proposed a number of improvements to the baseline BiLSTM
model.
We describe an alternative character-level function which can be
computed faster than BiLSTM and shows better performance.
We showed a way to pretrain character-level embeddings with
standard word embeddings.

We introduced a novel POS LM auxiliary loss.
We applied transfer learning to highly increase quality of the
model.
An open-source version of our model is available on
https://github.com/IlyaGusev/rnnmorph

Daniil Anastasyev Improving Part-of-Speech Tagging

https://github.com/IlyaGusev/rnnmorph


Introduction
Features

Additional losses
Additional data

Comparison
Summary

Summary

We proposed a number of improvements to the baseline BiLSTM
model.
We describe an alternative character-level function which can be
computed faster than BiLSTM and shows better performance.
We showed a way to pretrain character-level embeddings with
standard word embeddings.
We introduced a novel POS LM auxiliary loss.

We applied transfer learning to highly increase quality of the
model.
An open-source version of our model is available on
https://github.com/IlyaGusev/rnnmorph

Daniil Anastasyev Improving Part-of-Speech Tagging

https://github.com/IlyaGusev/rnnmorph


Introduction
Features

Additional losses
Additional data

Comparison
Summary

Summary

We proposed a number of improvements to the baseline BiLSTM
model.
We describe an alternative character-level function which can be
computed faster than BiLSTM and shows better performance.
We showed a way to pretrain character-level embeddings with
standard word embeddings.
We introduced a novel POS LM auxiliary loss.
We applied transfer learning to highly increase quality of the
model.

An open-source version of our model is available on
https://github.com/IlyaGusev/rnnmorph

Daniil Anastasyev Improving Part-of-Speech Tagging

https://github.com/IlyaGusev/rnnmorph


Introduction
Features

Additional losses
Additional data

Comparison
Summary

Summary

We proposed a number of improvements to the baseline BiLSTM
model.
We describe an alternative character-level function which can be
computed faster than BiLSTM and shows better performance.
We showed a way to pretrain character-level embeddings with
standard word embeddings.
We introduced a novel POS LM auxiliary loss.
We applied transfer learning to highly increase quality of the
model.
An open-source version of our model is available on
https://github.com/IlyaGusev/rnnmorph

Daniil Anastasyev Improving Part-of-Speech Tagging

https://github.com/IlyaGusev/rnnmorph

	Introduction
	Introduction
	Task description
	Work overview
	Datasets

	Features
	Word embeddings
	BiLSTM character-level embeddings
	Feed-forward character-level embeddings
	Character-level embeddings' pretraining
	Grammemes embedding

	Additional losses
	Multi-task learning
	CRF output layer

	Additional data
	Comparison
	Comparison with others results on PTB
	Comparison with others results on MorphoRuEval

	Summary

