Improving Part-of-Speech Tagging
via Multi-Task Learning
and Character-Level Word Representations

Daniil Anastasyev, Ilya Gusev, Eugene Indenbom

ABBYY, Moscow
MIPT, Moscow

Dialogue
24rd International Conference on Computational Linguistics
Moscow, RSUH, 2st June, 2018



Introduction
Feature
Additional losse
Additional data
Comparison
Summary

Introduction

Introduction
Task description
Work overview
Datasets

ABBYY

e The morphological analysis is a key step in many NLP pipelines.

Daniil Anastasyev

Improving Part-of-Speech Tagging



Introduction Introduction ABBYY

Task description
Work overview
Datasets

Introduction

e The morphological analysis is a key step in many NLP pipelines.

@ The results of morphological analysis are used in syntactic and
semantic parsing in ABBYY Compreno.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction Introduction ABBYY
T

ask description
Work overview
Datasets

Introduction

e The morphological analysis is a key step in many NLP pipelines.

@ The results of morphological analysis are used in syntactic and
semantic parsing in ABBYY Compreno.

@ Accurate morphological analyser can highly increase speed of the
syntactic parsing by reducing the number of obtained hypotheses.

Daniil Anastasyev Improving Part-of-Speech Tagging



Introduction
Introduction ABBYY

Task description
Work overview
Datasets

Task description

Basically, we try to predict the POS tag for each word in the sentence.

v Bepu CTOSIJT CTOJT CEKPETAPIIH , - - -
NOUN
Animacy=Inan
Case=Gen
Gender=Fem
Number=Sing

The interviews took place two years ago .
NN
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POS tags’ ambiguity

The task cannot be solved without taking the word’s context into
account:

she hated lies

VBD
PRP VBN NNS
33 VBZ
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Work overview

e Every machine learning model relies on the following
components:

Q Data;
@ Features extracted from the data;
@ Loss function.

o We used BiLSTM POS tagger as a strong baseline.
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Work overview

e Every machine learning model relies on the following
components:

Q Data;
@ Features extracted from the data;
@ Loss function.

o We used BiLSTM POS tagger as a strong baseline.

o We aimed to improve it by changes in these components.
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Baseline model

e BiLSTMs are proven to
be very effective for
POS tagging.

o Tag’s prediction is
conditioned on the
whole sentence.
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Result model

In our result model we
experimented with:

@ Different types of
character-level word
embeddings;

@ Additional grammemes
embeddings;

@ Auxiliary loss
functions;

@ Extra data for model’s
pretraining.
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Datasets

We compared our results on three datasets:

@ Penn Treebank — English dataset, standard dataset for English
models’ evaluation;

@ Syntagrus — Russian dataset with Universal Dependencies 2.1

tagset;
© MorphoRuEval — Russian dataset with Universal Dependencies
tagset.
| Dataset | Train | Dev | Test | #classes |
PTB 912 344 | 131 768 | 129 654 45
Syntagrus 871 082 | 118 630 | 117 470 721
MorphoRuEval || 977 567 | 108 581 19 560 302
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o Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.
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Word embeddings

o Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.

o However, word embeddings’ matrices are typically very big: 300
dimensional vectors for 50 000 words have 15 000 000 parameters.
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Word embeddings

o Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.

o However, word embeddings’ matrices are typically very big: 300
dimensional vectors for 50 000 words have 15 000 000 parameters.

o Another disadvantage of word embeddings is their inability to
process out-of-vocabulary words: we can represent them only as a
single unknown word vector.
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Word embeddings

o Pretrained on a large corpus word vectors contain useful
syntactic and semantic relationships.

o However, word embeddings’ matrices are typically very big: 300
dimensional vectors for 50 000 words have 15 000 000 parameters.

o Another disadvantage of word embeddings is their inability to
process out-of-vocabulary words: we can represent them only as a
single unknown word vector.

e To fight these problems we used character-level word embeddings.
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Grammemes embedding

BiLSTM character-level embeddings

e Character-level BILSTM (Char
BiLSTM) is one of the standard
ways to build word embeddings.
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BiLSTM character-level embeddings

e Character-level BILSTM (Char
BiLSTM) is one of the standard
ways to build word embeddings.

@ Processes characters one by one.
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o Character-level BILSTM (Char | Q
BiLSTM) is one of the standard =~ “waw [...J[ , LOICD) ][...J

Forward pass:

ways to build word embeddings. = g 7 —
s _’ 1 ™ _{W

@ Processes characters one by one.

e Handles words with arbitrary
lengths.

Embedding for the word "cats”
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BiLSTM character-level embeddings

Feed-forward character-level embeddings
Character-level embeddings’ pretraining
Grammemes embedding

o Character-level BILSTM (Char na | |
BiLSTM) is one of the standard o [.‘.J[ : 00000000
ways to build word embeddings. i Ll ' Ll JJ L_,

Forward passi _E, N .5.. _,m
@ Processes characters one by one. L : : LI

e Handles words with arbitrary
lengths.

@ Cannot be efficiently parallelized.

Embedding for the word "cats”
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Feed-forward character-level embeddings

o Feed-forward character-level
(Char FF) embeddings is our
alternative to Char BiLSTM.
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Feed-forward character-level embeddings

o Feed-forward character-level
(Char FF) embeddings is our
alternative to Char BiLSTM.

@ Processes concatenation of
characters’ embeddings.
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Feed-forward character-level embeddings

o Feed-forward character-level
(Char FF) embeddings is our
alternative to Char BiLSTM.

@ Processes concatenation of
characters’ embeddings.

o Handles words with fixed
lengths (we used 11-13 letters
restriction).
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Feed-forward character-level embeddings

o Feed-forward character-level

(Char FF) embeddings is our ¢ : LT_J
Tee

alternative to Char BiLSTM.
. e (@ @ 00@
@ Processes concatenation of [ [ [
characters’ embeddings. [ Denee Iater(sm)
° Handles WOrdS Wlth ﬁXed [ lRe\u activation and dropout
lengths (we used 11-13 letters pense ayer J
restriction). \.Aﬁ

o Can be computed much faster Embedding for the word “cats®
than BiLSTM.
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Grammemes
embedding Character-level

S word embedding

Dense (50) }

ReLL r
@ These two variants of | Dense 200) |
character-level functions
obtained approximately equal Backward LSTM(128)J Forward LSTM (128)
I‘esults \ Dropout (0.3)
° HOWGVQI‘, Char BILSTM needs Dense (128) \ BILSTM (128) \ Dense (128)
. cew o
twice as many epochs to l
. Dense Dense (128) S
converge and it works slower. Sotn [paam-
Prev grammatical Dense Next grammatical
value lso&lmax value

Current
grammatical value

[ Dataset [[ Char BiLSTM | Char FF ]
PTB 97.02% / 96.98% 97.32% / 97.26%
Syntagrus 95.23% / 95.39% | 94.98% / 95.16%
MorphoRuEval || 96.48% / 94.69% | 96.68% / 94.63%
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Character-level embeddings’ pretraining

o We used pretrained word vectors to
incorporate useful information encoded in
them into our character-level embeddings.
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Character-level embeddings’ pretraining

o We used pretrained word vectors to
incorporate useful information encoded in
them into our character-level embeddings.

o We trained an autoencoder-like network to
predict word’s index by its letters.
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Character-level embeddings’ pretraining

incorporate useful information encoded in
them into our character-level embeddings.

o We used pretrained word vectors to @

Character-Level

o We trained an autoencoder-like network to Function

predict word’s index by its letters.

Embedding for
the word "cats”

Dense layer

[ Output embeddings dense layer ]

o The output layer was initialized by the first
20 thousand pretrained vectors.

"cats" index
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Feed-forward character-level embeddings
Character-level embeddings’ pretraining
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Character-level embeddings’ pretraining

o We used pretrained word vectors to
incorporate useful information encoded in
them into our character-level embeddings.

o We trained an autoencoder-like network to
predict word’s index by its letters.

o The output layer was initialized by the first
20 thousand pretrained vectors.

@ The crossentropy loss forced embedding
predicted by the character-level function to
be similar to the corresponding vector and
less similar to all other words’ vectors.
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Character-level embeddings’ pretraining

@ The pretrained character-level embeddings were trained further

with the whole model.
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Character-level embeddings’ pretraining

@ The pretrained character-level embeddings were trained further

with the whole model.

@ The model with pretrained embeddings achieved much higher
quality during the first few epochs.
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Features
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Character-level embeddings’ pretraining

@ The pretrained character-level embeddings were trained further
with the whole model.

@ The model with pretrained embeddings achieved much higher
quality during the first few epochs.

o The pretraining process led to 4-5% error rate reduction (ERR)
on Russian datasets and 2-3% ERR on PTB.

| Dataset | Char FF | Char FF (Pretrained) |
PTB 97.32% / 97.26% | 97.40% / 97.31%
Syntagrus 94.98% / 95.16% | 95.22% / 95.36%
MorphoRuEval || 96.68% / 94.63% | 96.88% / 94.63%
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value (e.g., «land» vs «laud» or
«taxes» vs «takes»).

@ We used dictionary information to cut

improve the embeddings’ quality.
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Grammemes embedding

o Word’s form only cannot be a good
evidence to its syntactic or semantic
value (e.g., «land» vs «laud» or
«taxes» vs «takes»).

@ We used dictionary information to cut

improve the embeddings’ quality.

Noun Verb Singular Plural

o We estimated the probability of each ’ 0 | |0 26| |0 74| | o1 To ‘
possible grammeme using the word L
forms’ probabilities. Parts of speech Number
o E.g., noun form of the word «cut» [ Dense (50) |

has frequency equal to 2.84 - 1072, =
while the verb form has frequency @
8.75 - 107°. Therefore,
P(noun) ~ 0.26.

o We used an additional dense layer to

obtain some relationships between
grammemes.



Grammemes embedding

@ On Russian datasets the
grammemes embeddings gave
up to 35% ERR.

e On English dataset the
improvement seems marginal.
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Grammemes
embedding Character-level
Dropout (0.15) word embedding
| Dense(50) |
ReLU

| Dense (200) |

‘ Backward LSTM (128) ‘ Forward LSTM (128)

Dropout (0 s)_/

Dense (128) ‘ BILSTM (128) W Dense (128)
ReLU ReLU
Dense Dense (128) Dense
Softmax lBa\chNorm +RelU Softmax
Prev grammatical BEree Next grammatical
value lsoﬂmax value
Current

grammatical value

[ Dataset [[ Char FF (Pretrained) | + Grammemes ]
PTB 97.40% / 97.31% 97.43% / 97.30%
Syntagrus || 95.22% / 95.36% 96.77% / 97.00%
Gikrya 96.88% / 94.63% 98.07% / 95.36%
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Multi-task learning

o Multi-task learning is a known way to improve model’s quality
and make it more robust.
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Additional losses Multi-task learning
CRF output layer

Multi-task learning

o Multi-task learning is a known way to improve model’s quality
and make it more robust.

@ Model is optimized by both main loss function and some
auxiliary losses.
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Additional losses Multi-task learning
CRF output layer

Multi-task learning

o Multi-task learning is a known way to improve model’s quality
and make it more robust.

@ Model is optimized by both main loss function and some
auxiliary losses.

o It learns to produce more general representations from the data.
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Language models” auxiliary losses

o We used language models auxiliary losses to improve the model’s
quality.
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Additional losses Multi-task learning
CRF output layer

Language models’ auxiliary losses

o We used language models auxiliary losses to improve the model’s
quality.
o Word language model additionally tries to predict the next word

using Forward LSTM and the previous one with Backward
LSTM:

tag(hated)

Forward LSTM(she, hated) ~ lies
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Additional losses Multi-task learning
CRF output layer

Language models’ auxiliary losses

o We used language models auxiliary losses to improve the model’s
quality.
o Word language model additionally tries to predict the next word

using Forward LSTM and the previous one with Backward
LSTM:

tag(hated)

Forward LSTM(she, hated) ~ lies

e POS language model additionally tries to predict the next and
the previous words’ tags using Forward LSTM and Backward
LSTM correspondingly:

tag(hated)

Forward LSTM(she, hated) ~ tag(lies)
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Language models’ auxiliary losses

@ On PTB both loss variants led
to equal improvements.

o The POS LM loss gave
considerably better results on
Russian datasets.

@ Error reduction rate on PTB
and Syntagrus was about
7-8%, while on MorphoRuEval
testset we achieved 36% ERR.

Grammemes
embedding

Dropout (0.15)

| Dense(50) |

ABBYY

Character-level
word embedding

ReLU

| Dense (200) |

| Backward LSTM (128) |

Dropout (0. 3)‘)\

\’ BILSTM (128) \

Dense (128)

lReLU

Dense
lsaﬂmax

Prev grammatical
value

Dense (128)

Forward LSTM (128)

Dense (128)

lReLU

Dense

lBa\chNorm +ReLU lsaﬂmax

Next grammatical
value

Dense

lsoﬂmax
gramn?::\r:gva\ue
[ Dataset [[ Previous Model [ + Word LM [ + POSLM |
PTB 97.43% / 97.30% | 97.57% / 97.49% | 97.57% / 97.49%
Syntagrus 96.77% / 97.00% | 96.69% / 96.96% 96.97% / 97.24%
MorphoRuEval || 98.07% / 94.85% | 97.91% / 96.30% 98.12% / 96.72%
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CRF output layer

o CRF layer usually helps to improve the quality of sequence
labeling models.
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CRF output layer

CRF output layer

o CRF layer usually helps to improve the quality of sequence
labeling models.

o In our case, we were able to achieve a modest improvement only
on PTB dataset.

[ Dataset H Previous Model [ + CRF ]
PTB 97.57% / 97.49% | 97.60% / 97.51%
Syntagrus 96.97% / 97.24% | 96.72% / 96.97%
MorphoRuEval || 98.12% / 96.72% | 98.07% / 96.65%
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Transfer learning

o Transfer learning is a popular way to increase model’s quality.

o Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
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Transfer learning

o Transfer learning is a popular way to increase model’s quality.

o Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.

o We performed transfer learning to Syntagrus from two datasets:
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Transfer learning

o Transfer learning is a popular way to increase model’s quality.
o Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
o We performed transfer learning to Syntagrus from two datasets:
@ MorphoRuEval dataset with similar UD based tagset;
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Transfer learning

o Transfer learning is a popular way to increase model’s quality.
o Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
o We performed transfer learning to Syntagrus from two datasets:
@ MorphoRuEval dataset with similar UD based tagset;
© Large (10 million tokens) Compreno tagged dataset with different
tagset.
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Additional data

Transfer learning

o Transfer learning is a popular way to increase model’s quality.
o Usually, we pretrain a model on a large dataset and fine-tune it
on a smaller task-specific dataset.
o We performed transfer learning to Syntagrus from two datasets:
@ MorphoRuEval dataset with similar UD based tagset;
© Large (10 million tokens) Compreno tagged dataset with different
tagset.
o Both pretrained models achieved approximatelly similar results
and showed 38-39.5% ERR in comparison to our best previous

model.
[ Model “ Accuracy ]
Best previous 96.97% / 97.24%
MorphoRuEval pretrained || 98.21% / 98.33%
Compreno pretrained 98.18% / 98.29%
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Comparison with others results on MorphoRuEval
Comparison

Comparison with others results on PTB

’ Tagger H Test Acc ‘

@ Our result is worse than the best Manning (2011) || 97,32%
known result on PTB dataset. Segaard (2011) 97,50%

@ However, this result achieved with a Isj_mtOSQ(()Zl(;M) 377’??72807(07
model without word embeddings, N;Ilg ( ) ) ?’0
which means that our model uses a _(2016) 97,5570
much smaller number of parameters. Ch_Ol (2016) 97,64%

Rei (2017) 97,43%
[ This work [97,51% |
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Comparison with others results on MorphoRuEval
Comparison

Comparison with others results on MorphoRuEval

@ Our result is worse than the best known result on MorphoRuEval
dataset.

o However, this result is achieved without pretraining and usage of
word embeddings.

[ Tagger H Literature [ News [ VKontakte ]
Sorokin, et al 94.16% 93.71% 92.29%
Anastasyev, et al 95.30% 97.54% 95.15%
Anastasyev, with pretrain || 97.45% 97.37% 96.52%

[ This work [[ 96.46% [ 97.97% [ 95.64% ]
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Summary

o We proposed a number of improvements to the baseline BiLSTM
model.
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model.
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Summary

Summary

o We proposed a number of improvements to the baseline BiLSTM
model.

o We describe an alternative character-level function which can be
computed faster than BiLSTM and shows better performance.

o We showed a way to pretrain character-level embeddings with
standard word embeddings.

o We introduced a novel POS LM auxiliary loss.

o We applied transfer learning to highly increase quality of the
model.

@ An open-source version of our model is available on
https://github.com /TlyaGusev /rnnmorph
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