Using Context Features for Morphological Analysis of Russian

Alexey Sorokin^{1,2}, Ekaterina Yankovskaya¹

¹Moscow State University, ²Moscow Institute of Science and Technology

"Dialogue", International Conference on Computational Linguistics, Moscow, June, 1st, 2017

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - \bullet High results due to relatively simple morphology (\approx 97.5% on WSJ).

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology (\approx 97.5% on WSJ).
- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words.
 Though simple to implement and fast.

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology (\approx 97.5% on WSJ).
- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words.
 Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.

• Even if neural networks work well we do not know why. Let's do some linguistics instead.

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology (\approx 97.5% on WSJ).
- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words.
 Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.
 - And in Russian we need history of arbitrary length.

• Even if neural networks work well we do not know why. Let's do some linguistics instead.

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology ($\approx 97.5\%$ on WSJ).
- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words.
 Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.
 - And in Russian we need history of arbitrary length.
 - Constraint-based approach do not handle complex cases or require too much labour.
- Even if neural networks work well we do not know why. Let's do some linguistics instead.

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology ($\approx 97.5\%$ on WSJ).
- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words.
 Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.
 - And in Russian we need history of arbitrary length.
 - Constraint-based approach do not handle complex cases or require too much labour.
 - Neural networks.. Hmm, they were not tested.
- Even if neural networks work well we do not know why. Let's do some linguistics instead.

- Common ambiguities in Russian:
 - Nominative vs accusative for nouns and adjectives.
 - Genitive vs accusative for nouns and adjectives.

- Common ambiguities in Russian:
 - Nominative vs accusative for nouns and adjectives.
 - Genitive vs accusative for nouns and adjectives.
 - Short adjectives vs adverbs.
 - "что" a pronoun or a conjunction?

- Common ambiguities in Russian:
 - Nominative vs accusative for nouns and adjectives.
 - Genitive vs accusative for nouns and adjectives.
 - Short adjectives vs adverbs.
 - "что" a pronoun or a conjunction?
- How we may process it:
 - A nominative is usually a subject.
 - Accusative often follows a transitive verb being its direct object.
 - Adjectives and nouns agree in case, gender and number.

- Common ambiguities in Russian:
 - Nominative vs accusative for nouns and adjectives.
 - Genitive vs accusative for nouns and adjectives.
 - Short adjectives vs adverbs.
 - "что" a pronoun or a conjunction?
- How we may process it:
 - A nominative is usually a subject.
 - Accusative often follows a transitive verb being its direct object.
 - Adjectives and nouns agree in case, gender and number.
 - Short adjective is usually a predicate etc.

- Common ambiguities in Russian:
 - Nominative vs accusative for nouns and adjectives.
 - Genitive vs accusative for nouns and adjectives.
 - Short adjectives vs adverbs.
 - "что" a pronoun or a conjunction?
- How we may process it:
 - A nominative is usually a subject.
 - Accusative often follows a transitive verb being its direct object.
 - Adjectives and nouns agree in case, gender and number.
 - Short adjective is usually a predicate etc.
- Let's extract features reflecting whether these constraints are satisfied.

- Common ambiguities in Russian:
 - Nominative vs accusative for nouns and adjectives.
 - Genitive vs accusative for nouns and adjectives.
 - Short adjectives vs adverbs.
 - "что" a pronoun or a conjunction?
- How we may process it:
 - A nominative is usually a subject.
 - Accusative often follows a transitive verb being its direct object.
 - Adjectives and nouns agree in case, gender and number.
 - Short adjective is usually a predicate etc.
- Let's extract features reflecting whether these constraints are satisfied.
- These features are "soft constraints".

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.
- Hard constraint often fail:
 - Рассказал сказку vs рассказал друзьям о себе.
 - Думал уйти vs Думал о погоде.

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.
- Hard constraint often fail:
 - Рассказал сказку vs рассказал друзьям о себе.
 - Думал уйти vs Думал о погоде.
- Soft constraint: let us count a number of transitive verbs followed by a direct object.

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.
- Hard constraint often fail:
 - Рассказал сказку vs рассказал друзьям о себе.
 - Думал уйти vs Думал о погоде.
- Soft constraint: let us count a number of transitive verbs followed by a direct object.
- That would be a strong positive feature.

Feature inventory

- 9 groups of features:
 - Adjective coordination.
 - Determiner cooordination.
 - Preposition government.

Feature inventory

9 groups of features:

- Adjective coordination.
- Determiner cooordination.
- Preposition government.
- Verb government.
- Nominative features.
- Accusative features.

Feature inventory

9 groups of features:

- Adjective coordination.
- Determiner cooordination.
- Preposition government.
- Verb government.
- Nominative features.
- Accusative features.
- Noun-noun features.
- Noun-and-noun features.
- Noun-comma-noun features.

Examples of features: adjectives.

- Adjectives:
 - Number of adjectives.
 - Number of adjectives, coordinated with nouns to the right side.
 - Number of adjectives, coordinated with nouns to the left side.
 - Indicator for non-coordinated adjectives presence.

Examples of features: adjectives.

- Adjectives:
 - Number of adjectives.
 - Number of adjectives, coordinated with nouns to the right side.
 - Number of adjectives, coordinated with nouns to the left side.
 - Indicator for non-coordinated adjectives presence.
- Determiners: the same as adjectives.

Examples of features: adjectives.

- Adjectives:
 - Number of adjectives.
 - Number of adjectives, coordinated with nouns to the right side.
 - Number of adjectives, coordinated with nouns to the left side.
 - Indicator for non-coordinated adjectives presence.
- Determiners: the same as adjectives.
- Prepositions:
 - Number of prepositions.
 - Number of prepositions, coordinated with nouns in case.
 - Indicator of non-coordinated prepositions presence.

Examples of features: verb government

- For every verb lemma we collect the counts of following noun group cases.
- For every verb lemma we collect the counts of following preposition group cases.

Examples of features: verb government

- For every verb lemma we collect the counts of following noun group cases.
- For every verb lemma we collect the counts of following preposition group cases.
- Extracted features:
 - Sum of log-probabilities of verb objects over all verbs in the sentence.
 - Sum of log-probabilities of preposition verb objects over all verbs in the sentence.

Examples of features: verb government

- For every verb lemma we collect the counts of following noun group cases.
- For every verb lemma we collect the counts of following preposition group cases.
- Extracted features:
 - Sum of log-probabilities of verb objects over all verbs in the sentence.
 - Sum of log-probabilities of preposition verb objects over all verbs in the sentence.
 - Number of reflexive verbs followed by nominative (strong positive feature).
 - Number of reflexive verbs followed by instrumental case.
 - Total number of verbs in the sentence.



Examples of features: nominatives

- Nominatives: about 20 features.
 - Number of nominatives coordinated with verbs to the right.
 - Number of nominatives coordinated with verbs to the left.

Examples of features: nominatives

- Nominatives: about 20 features.
 - Number of nominatives coordinated with verbs to the right.
 - Number of nominatives coordinated with verbs to the left.
 - Number of nominative-nominative clauses.
 - Number of *это*-nominative clauses.
 - Number of noun-adjective clauses etc.

Examples of features: nominatives

- Nominatives: about 20 features.
 - Number of nominatives coordinated with verbs to the right.
 - Number of nominatives coordinated with verbs to the left.
 - Number of nominative-nominative clauses.
 - Number of *στο*-nominative clauses.
 - Number of noun-adjective clauses etc.
- Accusatives: about 20 features.
 - Number of transitive verbs.
 - Number of transitive verbs followed by accusative/genitive.
 - Number of transitive verbs preceded by *He* and followed by accusative/genitive.
 - Number of transitive verbs with direct objects to the left etc.

• The main idea: train a linear classifier to rank correct hypotheses higher.

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate *n*-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate *n*-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.
 - On each sentence s_i , train the classifier to score the feature vector $x_{i,0}$ higher than vectors $x_{i,j}$ for other hypotheses s_j :

$$(w; x_{i,0}) > (w; x_{i,j}).$$

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate *n*-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.
 - On each sentence s_i , train the classifier to score the feature vector $x_{i,0}$ higher than vectors $x_{i,j}$ for other hypotheses s_j :

$$(w; x_{i,0}) > (w; x_{i,j}).$$

Equivalently,

$$(w; x_{i,0} - x_{i,j}) > 0.$$

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate *n*-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.
 - On each sentence s_i , train the classifier to score the feature vector $x_{i,0}$ higher than vectors $x_{i,j}$ for other hypotheses s_j :

$$(w; x_{i,0}) > (w; x_{i,j}).$$

Equivalently,

$$(w; x_{i,0} - x_{i,j}) > 0.$$

• Standard classification task: arrange $x_{i,0} - x_{i,j}$ to the positive class and the opposite vector to the negative one.

The tagging algorithm

- The prediction procedure:
 - Generate *n*-best hypotheses for each sentence in the test set using baseline classifier.

The tagging algorithm

- The prediction procedure:
 - Generate *n*-best hypotheses for each sentence in the test set using baseline classifier.
 - Using the trained vector \mathbf{w} of weights, select the hypothesis $x_{i,j}$ with the highest score $(\mathbf{w}, x_{i,j})$.

The tagging algorithm

- The prediction procedure:
 - Generate *n*-best hypotheses for each sentence in the test set using baseline classifier.
 - Using the trained vector \mathbf{w} of weights, select the hypothesis $x_{i,j}$ with the highest score $(\mathbf{w}, x_{i,j})$.
- Algorithm: logistic regression. Averaged margin perceptron gives slightly worse results.

Performance evaluation

No	Model	Development set		Test set	
		Tag acc.	Sent acc.	Tag acc.	Sent acc.
1	HMM+prep+trans	95.0	74.1	93.77	65.15
2	1+adj+det+prep	95.3	74.3	94.05	66.14
3	2+verbs	95.5	75.2	94.22	66.77
4	3+nom+acc	96.2	78.1	94.75	68.79
5	4+conj+noun-noun	96.3	78.5	94.82	69.32

Таблица: Results on development and test set of MorphoRuEval-2017

Conclusions

- Positive:
 - Linguistic features and reranking actually work.

Conclusions

- Positive:
 - Linguistic features and reranking actually work.
- Problems:
 - Careful and labour-intensive feature engeneering (otherwise only a marginal gain is achieved).
 - Basic classifier probability receives too much weight.

Conclusions

- Positive:
 - Linguistic features and reranking actually work.
- Problems:
 - Careful and labour-intensive feature engeneering (otherwise only a marginal gain is achieved).
 - Basic classifier probability receives too much weight.
 - Reranking against lower hypotheses: basic classifier probability already does well.
 - Reranking against higher hypotheses: not all linguistic constraints are violated in such hypotheses.

Future work

- Partial solutions:
 - Rerank only against hypotheses whose basic loss is lower than some threshold.
 - Subtract a margin from basic classifier gain (small positive gains become negative forcing the classifier to use other features).

Future work

- Partial solutions:
 - Rerank only against hypotheses whose basic loss is lower than some threshold.
 - Subtract a margin from basic classifier gain (small positive gains become negative forcing the classifier to use other features).
- Future work:
 - Integrate a stronger basic classifier (CRF or neural nets).
 - Use more complex reranking procedure.

Future work

- Partial solutions:
 - Rerank only against hypotheses whose basic loss is lower than some threshold.
 - Subtract a margin from basic classifier gain (small positive gains become negative forcing the classifier to use other features).
- Future work:
 - Integrate a stronger basic classifier (CRF or neural nets).
 - Use more complex reranking procedure.
 - Automatic feature selection from patterns.
 - Use more lexically-oriented features.

Спасибо за внимание! Thank you for your attention!