Paraphrased Plagiarism Detection Using Sentence Similarity

Zubarev D.V. – PhD student Sochenkov I.V. – PhD

+7 (499) 135-04-63 117312, Moscow pr. 60-letiya Oktyabrya, 9

Plagiarism detection task

Two subtasks

- Source retrieval given a suspicious document and a large collection of sources, the task is to retrieve all plagiarized sources while minimizing retrieval costs
- Text alignment given a pair of documents, the task is to identify all contiguous maximal-length passages of reused text between them

Related work

- Source retrieval
 - Querying search engines
 - Methods revolve around selecting keywords
 - Many heuristics for candidates filtering
- Text alignment
 - Many methods exist based on N-grams, skip
 N-grams, syntactic N-grams, stop words N-grams
 - Vector space models with cosine similarity are also widely used
- There was competition PAN (2009-2015)

Preprocessing of collection of sources

- Index all sources for future fast retrieval
- Store extra information about each word (PoS-tags, semantic roles, etc.)
- Some statistics of a source collection:
 - 5,7 million texts
 - 130 GB raw size
 - 229 GB size of indexes

Document preprocessing: Linguistic analysis

- Perform deep natural language processing of the uploaded text
 - POS-tagging
 - Syntactic parsing
 - Semantic role labeling
 - Semantic relation extraction

Shelmanov A. O., Smirnov I. V. Methods for semantic role labeling of Russian texts, Dialogue 2014

First stage: Candidates retrieval (source retrieval)

- Employ Vector Space Model and modified Hamming distance
- Use some noun phrases along with words for creating a vector
- Words and phrases are weighted (TF-IDF)
- Only top 100-200 are used
- The 600 most similar documents are retrieved on this stage
- They are called candidates

Second stage: Suspicious sentences selection

- Filter sentences based on various criteria:
 - a TF-IDF weight of a sentence
 - a length of a sentence
 - an amount of non-alphanumeric symbols in a sentence
- TF-IDF weighting schema is used
- IDF weights are calculated based on word frequencies in all collections
- Top 10000 weighted sentences are selected

Second stage: Fast filtering (Text alignment)

- Intersect each selected sentence from the suspicious document with all other sentences from the candidates
- Apply fast algorithm for estimation of the size of intersection for filtering most irrelevant sentences with unmatched lexis
- Pairs of sentences that share at least 35 % of words are passed to the next stage

Third stage: Sentence similarity (Text alignment)

- Calculate multiple similarities of each pair using different measures:
 - lexis similarity measure
 - syntactic similarity measure
 - semantic similarity measure
- Combine each obtained value into overall similarity
- Pairs that exceed predefined similarity threshold are considered to be incorrectly reused fragments

Tuning plagiarism detection method (Random search)

- 13 parameters to tune:
 - each of them has from 10 to 20 values
- Initialize each parameter with random value
- On each iteration
 - Slightly tweak each parameter by increasing/decreasing its value
 - Measure performance
 - Choose the best combination
 - Repeat
- Interrupt when the performance of the detection method is not changed for a while
- Repeat the whole search with a new seed

Evaluation corpus from PlagEvalRus 2017

- Source retrieval:
 - Sources collection: 5.7 million documents
 - training set: 671 suspicious documents
 - Test set: 10k suspicious documents
- Text alignment:
 - training set: 9k pairs
 - Test set:
 - ~10k pairs
 - available only on evaluation platform Tira

Evaluation corpus (2)

- Evaluation corpus includes plagiarism cases with various obfuscation types:
 - Essay-1 manually written essays with plagiarism; copypaste and light/moderate modifications (only in training dataset)
 - Essay-2 manually written essays with plagiarism; moderate/heavy modifications
 - Generated texts texts with randomly generated plagiarism; copy-paste or moderate modifications
 - Academic texts real world examples of plagiarism;
 mostly copy-paste

Performance Measures (Source retrieval)

- Recall the fraction of sources that are retrieved
- Precision the fraction of retrieved documents that are true sources
- Mean average precision (MAP) the higher the more sources are in the top of the result

Evaluation of source retrieval algorithm

Results on the test data for source retrieval

	Recall	Mean average precision	Precision
Academic	0.978	0.61	0.003
Essays-2	0.989	0.39	0.009

Performance Measures (Text alignment)

- Recall the fraction of a source text that is detected
- Precision the fraction of detected text that is plagiarised
- Granularity reflects the consistency of detected text (the less the better)
- Plagdet the combination of previous three measures

Evaluation of text alignment

Results on the test data for source retrieval

	Recall	Precision	Granularity	Plagdet
Essays-2	0.531	0.82	1.0016	0.644
Baseline: Essays-2	0.076	0.896	<u>1.141</u>	0.128
Generated paraphrasing	0.865	0.981	1.483	0.7
Baseline: generated paraphrasing	0.833	0.97	<u>3.464</u>	0.416
Generated copy/paste	0.859	0.978	1.466	0.702
Baseline: generated copy/paste	0.994	0.961	1.004	0.9744

Most difficult obfuscation types for our method

- Training data was annotated with the type of obfuscation
- Recall per type for Essays-1 collection

	Description	Recall
ССТ	concatenation of sentences	0.41
HPR	paraphrasing	0.44
SSP	splitting of sentences	0.65
LPR	moderate modifications (replacing/reordering of words)	0.78
ADD	addition of words	0.85
DEL	deletion of words	0.85
CPY	copy/paste	0.87

Evaluation of the plagiarism detection method

Results on training data

	Source Retrieval		Text Alignment		
	Rec.	MAP	Rec.	Prec.	Plagdet
Essays-1	0.97	0.754	0.783	0.904	0.839
Essays-2	0.82	0.709	0.316	0.883	0.466

Results on test data

	Source Retrieval		Text Alignment		
	Rec.	MAP	Rec.	Prec.	Plagdet
Essays-2	0.83	0.608	0.382	0.885	0.533

Future work

- Estimate current impact of semantic/syntactic similarity measures on recall
- Explore more possibilities to leverage them for detecting heavily disguised plagiarism
- Address weak points of detection some obfuscations (concatenation)

Denis Zubarev - zubarev@isa.ru

Demo - like.exactus.ru