A SYNTAX-BASED DISTRIBUTIONAL MODEL FOR DISCRIMINATING BETWEEN SEMANTIC SIMILARITY AND **ASSOCIATION**

Terminology. Relatedness

"similarity"

feature-based taxonomic relatedness

"association"

thematicrelatedness

Related

similar

sharing intrinsic
 features that
 account for
 membership in the
 same semantic
 category

associated

frequently occurring together in space and language

Related

similar

- **car** and **bike**
 - common physical features (wheels)
 - common function (transport)
 - fall within a clearly definable category (modes of transport)

associated

bee and **honey**

similar associated

king and queen

State of the art

- With few exceptions, recent research in distributional semantics has focused on quantitative rather than qualitative aspects of word interaction within lexical semantic system.
- Such approaches neglect the difference between similarity and association: their focus is estimating the strength of the connection between two words in the semantic network, regardless of the relation type.

Task

 Develop a distributional model aimed at recognizing semantic similarity—relations that are based on shared intrinsic features and common category membership

Task

- Pairs of similar (and possibly associated) nouns
 should get higher scores than
- pairs of pure associations (relations that are based on thematic, or situational, co-occurrence and are not supported by taxonomical commonality)

RuSim1000 dataset

- 1000 pairs of related nouns that are divided into two subsets
 - Positive examples are pairs of similar (and possibly associated) nouns
 - Negative examples are pairs of associated, but not similar nouns

RuSim1000 dataset

- RuSim1000 was designed in such a way that it would be compatible with the RUSSE evaluation framework
 - Average Precision (AP) as evaluation measure

RuSim1000 dataset. Positive subset

- Core of the positive subset:
 - synonyms (имя-название, name-title)
 - hyponym-hypernym (питон-змея, python-snake)
 - **c**o-hyponyms (писатель-поэт, writer-poet).

RuSim1000 dataset. Negative subset

- Core of the negative subset—pairs of nouns representing ontologically different entities:
 - part-whole (шерсть-животное, fur-animal)
 - □ element-set (самолет-эскадрилья, airplane-squadron)
 - functional (situational) relationship (доктор-клиника, doctor-clinic, винтовка-выстрел, rifle-shot)

RuSim1000 dataset. Difficult and borderline cases

Antonyms

are taken to be similar (i.e. positive examples)

Assumption: their opposition holds within a certain category to which they both belong (свет-тьма, light-darkness)

RuSim1000 dataset. Difficult and borderline cases

Roles

It was decided to qualify as positive (i.e. similar):

- □ pairs of the kind "a type and its typical role" (торф-топливо, peat-fuel, but not самолет-вооружение, airplane-armament)
- thematically related roles of the same holder type, including complementary roles (врач-медсестра, doctor-nurse, врач-пациент, doctor-patient)

Dataset RuSim1000

word 1	word 2	sim	
лошадь (horse)	жеребец (stallion)	1	
лошадь (horse)	кобыла (mare)	1	
лошадь (horse)	пони (pony)	1	
лошадь (horse)	кляча (jade)	1	
лошадь (horse)	седло (saddle)	0	
лошадь (horse)	конюх (groom)	0	
лошадь (horse)	грива (mane)	0	
лошадь (horse)	галоп (gallop)	0	

Model

- similar objects tend to have more shared features than dissimilar
- similar objects tend to act in similar way
- similar objects tend to be exposed to similar actions

Model

- The context vector is composed of
 - adjectives, for feature-based similarity measure
 - verbs—for behavioral similarity
- The length of vectors is not limited
- Positive pointwise mutual information (PPMI)
- Cosine similarity for measuring the distance between vectors

Experiments and results

- Source of statistical data—RuWac corpus
- Evaluation on RuSim1000 (Average Precision)

syntactic relation			
attributive	predicative	1-completive	
0.907	0.846	0.882	

combination of syntactic relations			
attributive + predicative	attributive + 1-completive		
0.918	0.925		

Thank you!