Coreference Resolution for Russian: The Impact of Semantic Features

Svetlana Toldova¹ toldova@yandex.ru Max Ionov² max.ionov@gmail.com

¹National Research University Higher School of Economics ²Moscow State University, Goethe University Frankfurt

> Dialogue 2017 RSUH, 31.05.2017

Table of Contents

Coreference resolution

2 Setting the baseline

3 Semantic information

S. Toldova, M. Ionov Coreference Resolution for Russian: Semantic Features

Coreference

Coreference resolution:

Coreference

Coreference resolution:

• Clustering noun phrases that refer to the same entity

Coreference

Coreference resolution:

- Clustering noun phrases that refer to the same entity
- An important task for many high-level NLP tasks:

Coreference

Coreference resolution:

- Clustering noun phrases that refer to the same entity
- An important task for many high-level NLP tasks:
 - Machine translation
 - Discourse parsing
 - Summarization
 - . . .

(1) Но дача была так расположена, что откуда бы я ни заходил, я мог видеть только небольшой угол двора. Он был так же пуст и невозделан, как и окружающая местность.

(1) Но дача была так расположена, что откуда бы я ни заходил, я мог видеть только [небольшой угол [двора]]. Он был так же пуст и невозделан, как и окружающая местность.

 Но [дача]₁ была так расположена, что откуда бы [я]₂ ни заходил, [я]₂ мог видеть только [небольшой угол [двора]₄]₃.
[Он] был так же пуст и невозделан, как и [окружающая местность]₅.

 Но [дача]₁ была так расположена, что откуда бы [я]₂ ни заходил, [я]₂ мог видеть только [небольшой угол [двора]₄]₃. [Он]₃ был так же пуст и невозделан, как и [окружающая местность]₅.

 Но [дача]₁ была так расположена, что откуда бы [я]₂ ни заходил, [я]₂ мог видеть только [небольшой угол [двора]₄]₃. [Он]₄ был так же пуст и невозделан, как и [окружающая местность]₅.

Coreference and coreference resolution

• A lot of theoretical research on reference

- A lot of theoretical research on reference
- A lot of research on coreference resolution for English

- A lot of theoretical research on reference
- A lot of research on coreference resolution for English
- Some research on coreference resolution for other languages

- A lot of theoretical research on reference
- A lot of research on coreference resolution for English
- Some research on coreference resolution for other languages increasing as we speak

- A lot of theoretical research on reference
- A lot of research on coreference resolution for English
- Some research on coreference resolution for other languages increasing as we speak
- A shared task on anaphora and coreference resolution for Russian in 2014:

- A lot of theoretical research on reference
- A lot of research on coreference resolution for English
- Some research on coreference resolution for other languages increasing as we speak
- A shared task on anaphora and coreference resolution for Russian in 2014:
 - 3 teams participated in the coreference resolution track

- A lot of theoretical research on reference
- A lot of research on coreference resolution for English
- Some research on coreference resolution for other languages increasing as we speak
- A shared task on anaphora and coreference resolution for Russian in 2014:
 - 3 teams participated in the coreference resolution track
 - None of them submitted a paper with a system description

- A lot of theoretical research on reference
- A lot of research on coreference resolution for English
- Some research on coreference resolution for other languages increasing as we speak
- A shared task on anaphora and coreference resolution for Russian in 2014:
 - 3 teams participated in the coreference resolution track
 - None of them submitted a paper with a system description
 - No open coreference resolution system trained for Russian available for research

Data: RuCor

• RuCor — Russian coreference corpus

< ≣ >

-

э

- RuCor Russian coreference corpus
- Introduced with a shared task in 2014

- RuCor Russian coreference corpus
- Introduced with a shared task in 2014
- Published under an open license

- RuCor Russian coreference corpus
- Introduced with a shared task in 2014
- Published under an open license
- Corpus size:

- RuCor Russian coreference corpus
- Introduced with a shared task in 2014
- Published under an open license
- Corpus size:
 - 180 texts
 - 3638 chains
 - 16557 noun phrases

- RuCor Russian coreference corpus
- Introduced with a shared task in 2014
- Published under an open license
- Corpus size:
 - 180 texts
 - 3638 chains
 - 16557 noun phrases
- Automatically processed:

- RuCor Russian coreference corpus
- Introduced with a shared task in 2014
- Published under an open license
- Corpus size:
 - 180 texts
 - 3638 chains
 - 16557 noun phrases
- Automatically processed:
 - Sentence splitting, tokenization
 - Morphological annotation

- RuCor Russian coreference corpus
- Introduced with a shared task in 2014
- Published under an open license
- Corpus size:
 - 180 texts
 - 3638 chains
 - 16557 noun phrases
- Automatically processed:
 - Sentence splitting, tokenization
 - Morphological annotation (partially fixed manually)
 - Dependency parsing

RuCor annotation guidelines

• Based on MUC-6 scheme

S. Toldova, M. Ionov Coreference Resolution for Russian: Semantic Features

- Based on MUC-6 scheme
- Only real-world entities

- Based on MUC-6 scheme
- Only real-world entities (no abstract nouns or generic expressions)

- Based on MUC-6 scheme
- Only real-world entities (no abstract nouns or generic expressions)
- Only identity relations

- Based on MUC-6 scheme
- Only real-world entities (no abstract nouns or generic expressions)
- Only identity relations
- No singleton annotation

- Based on MUC-6 scheme
- Only real-world entities (no abstract nouns or generic expressions)
- Only identity relations
- No singleton annotation NP is annotated only if it is a part of a coreference chain

Experiments design

• Noun phrases are generated from syntactic annotations

Experiments design

- Noun phrases are generated from syntactic annotations
- Evaluation is performed using CoNLL reference coreference scorers

Experiments design

- Noun phrases are generated from syntactic annotations
- Evaluation is performed using CoNLL reference coreference scorers
- Based on exact matches of NPs
Experiments design

- Noun phrases are generated from syntactic annotations
- Evaluation is performed using CoNLL reference coreference scorers
- Based on exact matches of NPs
- Two evaluation strategies: gold mentions and gold boundaries:

Experiments design

- Noun phrases are generated from syntactic annotations
- Evaluation is performed using CoNLL reference coreference scorers
- Based on exact matches of NPs
- Two evaluation strategies: gold mentions and gold boundaries:
 - GOLD MENTIONS: a set of NPs are taken from GS, coreference relations are predicted between them
 - GOLD BOUNDARIES: all NPs are considered, boundaries of the NPs are taken from GS

Experiments design

- Noun phrases are generated from syntactic annotations
- Evaluation is performed using CoNLL reference coreference scorers
- Based on exact matches of NPs
- Two evaluation strategies: gold mentions and gold boundaries:
 - GOLD MENTIONS: a set of NPs are taken from GS, coreference relations are predicted between them
 - $\bullet~{\rm GOLD}~{\rm BOUNDARIES:}$ all NPs are considered, boundaries of the NPs are taken from GS
- Two coreference scores: MUC and B³

Coreference resolution Setting the baseline Semantic information

Experiments design: Linguistics vs. NLP

• As it is often the case, some of the decisions about data modeling and annotation could be done differently:

Experiments design: Linguistics vs. NLP

- As it is often the case, some of the decisions about data modeling and annotation could be done differently:
 - What to annotate
 - How to annotate

Experiments design: Linguistics vs. NLP

- As it is often the case, some of the decisions about data modeling and annotation could be done differently:
 - What to annotate
 - How to annotate
- \Rightarrow The task is not to resolve coreference in general...

Experiments design: Linguistics vs. NLP

- As it is often the case, some of the decisions about data modeling and annotation could be done differently:
 - What to annotate
 - How to annotate
- ⇒ The task is not to resolve coreference *in general*... but to predict coreference relations according to the RuCor annotation guidelines

Coreference resolution Setting the baseline Semantic information

Table of Contents

1 Coreference resolution

2 Setting the baseline

3 Semantic information

S. Toldova, M. Ionov Coreference Resolution for Russian: Semantic Features

Coreference resolution Setting the baseline Semantic information

Mention-pair model

• Mention-pair model — the simplest model for coreference resolution

Mention-pair model

- Mention-pair model the simplest model for coreference resolution
- For each NP there is a set of NPs possible antecedents

Mention-pair model

- Mention-pair model the simplest model for coreference resolution
- For each NP there is a set of NPs possible antecedents
- For each such pair we can predict if they are coreferent

Mention-pair model

- Mention-pair model the simplest model for coreference resolution
- For each NP there is a set of NPs possible antecedents
- For each such pair we can predict if they are coreferent
- After all the decisions are made, positive pairs are grouped together

Coreference resolution Setting the baseline Semantic information

Rule-based baselines

A few simple rule-based baselines:

• STRMATCH: two NPs corefer if their lemmas are the same (only for nouns and deictic pronouns).

- STRMATCH: two NPs corefer if their lemmas are the same (only for nouns and deictic pronouns).
- STRMATCHPRO: STRMATCH + non-deictic pronouns are paired with the nearest NP that agrees in gender and number.

- STRMATCH: two NPs corefer if their lemmas are the same (only for nouns and deictic pronouns).
- STRMATCHPRO: STRMATCH + non-deictic pronouns are paired with the nearest NP that agrees in gender and number.
- HEADMATCH: two NPs corefer if their heads are the same (only for nouns and deictic pronouns).

- STRMATCH: two NPs corefer if their lemmas are the same (only for nouns and deictic pronouns).
- STRMATCHPRO: STRMATCH + non-deictic pronouns are paired with the nearest NP that agrees in gender and number.
- HEADMATCH: two NPs corefer if their heads are the same (only for nouns and deictic pronouns).
- HEADMATCHPRO: HEADMATCH + non-deictic pronouns are paired with the nearest NP that agrees in gender and number.

	MUC			B ³		
	P	R	F_1	P	R	F_1
StrMatch	94.29	37.36	53.52	97.09	38.19	54.82
StrMatchPro	84.90	52.42	64.82	89.34	43.35	58.37
HeadMatch	87.78	47.06	61.27	92.11	43.64	59.22
HeadMatchPro	84.89	52.50	64.87	89.29	43.38	58.40

Table 1: Rule-based coreference systems, gold mentions

	MUC			B ³		
	P	R	F_1	P	R	F_1
StrMatch	94.29	37.36	53.52	97.09	38.19	54.82
StrMatchPro	84.90	52.42	64.82	89.34	43.35	58.37
HeadMatch	87.78	47.06	61.27	92.11	43.64	59.22
HeadMatchPro	84.89	52.50	64.87	89.29	43.38	58.40

Table 1: Rule-based coreference systems, gold mentions

	MUC			B ³		
	P	R	F_1	P	R	F_1
StrMatch	52.86	32.29	40.09	33.54	34.04	33.79
StrMatchPro	34.40	45.46	39.16	26.89	39.58	32.02
HeadMatch	35.26	41.38	38.07	29.57	38.88	33.59
HeadMatchPro	34.40	45.49	39.18	26.89	39.58	32.02

Table 2: Gold boundaries, mention detection f-score 51.38

Coreference resolution Setting the baseline Semantic information

Baseline ML models

Two ML models:

• Basic set of features

Baseline ML models

Two ML models:

- Basic set of features
- Extended feature set:

Baseline ML models

Two ML models:

- Basic set of features
- Extended feature set:
 - Distance features
 - Morphological features
 - Lexical features
 - Syntactical features

Basic feature set

- The distance between an anaphoric NP and a candidate antecedent is 1 sentence.
- Both NPs are not pronouns and after removing any demonstratives they match.
- NPs agree in animacy and if they are not pronouns their syntactic heads match.
- Anaphoric NP is a pronoun.
- Candidate antecedent is a pronoun.
- Both NPs are pronouns.
- NPs agree in gender.
- NPs agree in number.
- Both NPs are proper.
- An anaphoric NP is a demonstrative.
- NPs are in the appositive relation.

Coreference resolution Setting the baseline Semantic information

Extended features

Distance features

Coreference resolution Setting the baseline Semantic information

Extended features

• Distance features: number of nouns between two NPs

- Distance features: number of nouns between two NPs
- Morphological features

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type
- Lexical features

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type
- Lexical features:
 - Modifiers: one of the NPs equals to a noun modifier in another NP

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type
- Lexical features:
 - Modifiers: one of the NPs equals to a noun modifier in another NP
 - Acronyms: one NP is an acronym of another

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type
- Lexical features:
 - Modifiers: one of the NPs equals to a noun modifier in another NP
 - Acronyms: one NP is an acronym of another
- Syntactical features

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type
- Lexical features:
 - Modifiers: one of the NPs equals to a noun modifier in another NP
 - Acronyms: one NP is an acronym of another
- Syntactical features:
 - NPs are subjects
 - NPs are objects

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type
- Lexical features:
 - Modifiers: one of the NPs equals to a noun modifier in another NP
 - Acronyms: one NP is an acronym of another
- Syntactical features:
 - NPs are subjects
 - NPs are objects
 - Syntactic parallelism:

- Distance features: number of nouns between two NPs
- Morphological features: NPs are pronouns of a specific type
- Lexical features:
 - Modifiers: one of the NPs equals to a noun modifier in another NP
 - Acronyms: one NP is an acronym of another
- Syntactical features:
 - NPs are subjects
 - NPs are objects
 - Syntactic parallelism: both NPs are in the beginning of sentences and they are both subjects

Extended features: examples

- Modifiers:
 - (2) а. президент Обама 'president Obama' президент 'president'

Extended features: examples

- Modifiers:
 - (2) а. президент Обама 'president Obama' президент 'president'
 - NB классом этого друга 'class of this friend' собственный класс мальчика 'boy's own class'
Extended features: examples

- Modifiers:
 - (2) а. президент Обама 'president Obama' президент 'president'
 - NB классом этого друга 'class of this friend' собственный класс мальчика 'boy's own class' head

comparison is not the same and leads to errors

Extended features: examples

Modifiers:

- (2) а. президент Обама 'president Obama' президент 'president'
 - NB классом этого друга 'class of this friend' собственный класс мальчика 'boy's own class' head comparison is not the same and leads to errors

• Acronyms:

(3) РФ 'RF' — Российская Федерация 'Russian Federation'

Extended features: examples

Modifiers:

- (2) а. президент Обама 'president Obama' президент 'president'
 - NB
 классом этого друга 'class of this friend' —

 собственный класс мальчика 'boy's own class'
 head

comparison is not the same and leads to errors

Acronyms:

(3) РФ 'RF' — Российская Федерация 'Russian Federation' but not Россия 'Russia'

Baseline ML models: results

	MUC			B ³		
	Р	R	F_1	P	R	F_1
HeadMatchPro	84.89	52.50	64.87	89.29	43.38	58.40
MLMENTIONPAIR	73.98	62.24	67.61	71.40	49.34	58.36
MLUPDATED	79.29	63.01	70.22	79.42	48.39	60.14

Table 3: ML-based coreference systems, gold mentions

Baseline ML models: results

	MUC			B ³		
	Р	R	F_1	P	R	F_1
HeadMatchPro	84.89	52.50	64.87	89.29	43.38	58.40
MLMENTIONPAIR	73.98	62.24	67.61	71.40	49.34	58.36
MLUPDATED	79.29	63.01	70.22	79.42	48.39	60.14

Table 3: ML-based coreference systems, gold mentions

	MUC			B ³		
	Р	R	F_1	P	R	F_1
HeadMatchPro	34.40	45.49	39.18	26.89	39.58	32.02
MLMENTIONPAIR	37.91	55.85	45.16	21.88	43.98	29.22
MLUPDATED	37.94	53.87	44.52	25.00	42.61	31.51

Table 4: Gold boundaries, mention detection f-score 51.21

Table of Contents

Coreference resolution

2 Setting the baseline

Semantic information: sources

• A lot of cases is impossible to resolve without semantic information:

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy
 - (4) профессор Вагнер 'professor Vagner' необычайного человека 'an extraordinary man'

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy
 - (4) профессор Вагнер 'professor Vagner' необычайного человека 'an extraordinary man'
- We test the impact of 3 ways to include semantic information:

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy
 - (4) профессор Вагнер 'professor Vagner' необычайного человека 'an extraordinary man'
- We test the impact of 3 ways to include semantic information:
 - A list of named entities with their synonyms

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy
 - (4) профессор Вагнер 'professor Vagner' необычайного человека 'an extraordinary man'
- We test the impact of 3 ways to include semantic information:
 - A list of named entities with their synonyms
 - A word2vec model

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy
 - (4) профессор Вагнер 'professor Vagner' необычайного человека 'an extraordinary man'
- We test the impact of 3 ways to include semantic information:
 - A list of named entities with their synonyms
 - A word2vec model to check if two NPs are similar

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy
 - (4) профессор Вагнер 'professor Vagner' необычайного человека 'an extraordinary man'
- We test the impact of 3 ways to include semantic information:
 - A list of named entities with their synonyms
 - A word2vec model
 to check if two NPs are similar
 - A thesaurus

- A lot of cases is impossible to resolve without semantic information:
 - Synonymy
 - Hyponymy / hyperonymy
 - (4) профессор Вагнер 'professor Vagner' необычайного человека 'an extraordinary man'
- We test the impact of 3 ways to include semantic information:
 - A list of named entities with their synonyms
 - A word2vec model to check if two NPs are similar
 - A thesaurus

to check if two NPs are similar to check if two NPs are related

Named entities

• 2 lists:

э

- 2 lists:
 - A tiny list of frequent NEs from the corpus

- 2 lists:
 - A tiny list of frequent NEs from the corpus
 - A large list of geographical names

- 2 lists:
 - A tiny list of frequent NEs from the corpus
 - A large list of geographical names

from GeoNames

- 2 lists:
 - A tiny list of frequent NEs from the corpus
 - A large list of geographical names from GeoNames
- The lists are used to check for synonyms and to check if the NE class is the same for both NPs

- 2 lists:
 - A tiny list of frequent NEs from the corpus
 - A large list of geographical names from GeoNames
- The lists are used to check for synonyms and to check if the NE class is the same for both NPs
- Both improve the recall

- 2 lists:
 - A tiny list of frequent NEs from the corpus
 - A large list of geographical names from GeoNames
- The lists are used to check for synonyms and to check if the NE class is the same for both NPs
- Both improve the recall (and F-measure as a result)

- 2 lists:
 - A tiny list of frequent NEs from the corpus
 - A large list of geographical names from GeoNames
- The lists are used to check for synonyms and to check if the NE class is the same for both NPs
- Both improve the recall (and F-measure as a result)
- Using a proper NER should improve further

- 2 lists:
 - A tiny list of frequent NEs from the corpus
 - A large list of geographical names from GeoNames
- The lists are used to check for synonyms and to check if the NE class is the same for both NPs
- Both improve the recall (and F-measure as a result)
- Using a proper NER should improve further too few hits for items in the lists

Word2vec

• "RusVectores" word2vec model

э

-

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases
- Low threshold: a lot of false positives

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases
- Low threshold: a lot of false positives co-hyponyms

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases
- Low threshold: a lot of false positives co-hyponyms
 - (5) а. муж 'husband' супруг 'spouse'

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases
- Low threshold: a lot of false positives co-hyponyms
 - (5) а. муж 'husband' супруг 'spouse'
 - b. муж 'husband' жена 'wife'

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases
- Low threshold: a lot of false positives co-hyponyms
 - (5) а. муж 'husband' супруг 'spouse'
 - b. муж 'husband' жена 'wife' lower threshold

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases
- Low threshold: a lot of false positives co-hyponyms
 - (5) а. муж 'husband' супруг 'spouse'
 - b. муж 'husband' жена 'wife' lower threshold
- Most of the results are also covered by RuThes

- "RusVectores" word2vec model
- Used to look up the similarity of the heads of both NPs
- Improved the results slightly increasing the recall
- A threshold is used to determine if two words are similar
- High threshold: very few cases
- Low threshold: a lot of false positives co-hyponyms
 - (5) а. муж 'husband' супруг 'spouse'
 - b. муж 'husband' жена 'wife' lower threshold
- Most of the results are also covered by RuThes
- But: should help for the non-standard vocabulary
RuThes-Lite

• Thesaurus RuThes-Lite

S. Toldova, M. Ionov Coreference Resolution for Russian: Semantic Features

- Thesaurus RuThes-Lite
- Used to look up two NPs or their heads:
 - If their domains are the same, they are from the same class
 - If there is a path from one to another using a parent relation, they are considered aliases

- Thesaurus RuThes-Lite
- Used to look up two NPs or their heads:
 - If their domains are the same, they are from the same class
 - If there is a path from one to another using a parent relation, they are considered aliases
- Improved the results slightly increasing the recall

- Thesaurus RuThes-Lite
- Used to look up two NPs or their heads:
 - If their domains are the same, they are from the same class
 - If there is a path from one to another using a parent relation, they are considered aliases
- Improved the results slightly increasing the recall

- Thesaurus RuThes-Lite
- Used to look up two NPs or their heads:
 - If their domains are the same, they are from the same class
 - If there is a path from one to another using a parent relation, they are considered aliases
- Improved the results slightly increasing the recall
 - (6) а. работа 'work' труд 'labor'
 - b. лицо 'face / person' человек 'man'

- Thesaurus RuThes-Lite
- Used to look up two NPs or their heads:
 - If their domains are the same, they are from the same class
 - If there is a path from one to another using a parent relation, they are considered aliases
- Improved the results slightly increasing the recall

b. лицо 'face / person' — человек 'man' homonymy

Results

	MUC			B ³		
	Р	R	F_1	P	R	F_1
MLMENTIONPAIR	73.98	62.24	67.61	71.40	49.34	58.36
MLUPDATED	79.35	63.44	70.51	79.37	48.60	60.29
NAMEDENTITIES	79.43	63.72	70.71	79.37	48.86	60.48
WORD2VEC	79.29	63.49	70.52	79.25	48.64	60.28
RUTHES	79.19	63.79	70.66	78.92	48.78	60.29
All	79.19	63.97	70.77	78.85	48.94	60.39

Table 5: The impact of semantic information, gold mentions

Results: gold boundaries

	MUC			B ³		
	Р	R	F_1	P	R	F_1
MLMENTIONPAIR	37.91	55.85	45.16	21.88	43.98	29.22
MLUPDATED	37.94	53.87	44.52	25.00	42.61	31.51
NAMEDENTITIES	38.01	54.10	44.65	24.99	42.83	31.56
WORD2VEC	37.69	53.92	44.37	24.95	42.68	31.49
RUTHES	36.27	54.20	43.46	24.63	42.83	31.28
All	36.08	54.32	43.36	24.60	42.94	31.28

Table 6: Gold boundaries, mention detection f-score 51.21

Discussion

• Distributional models are not able to resolve general hyperonyms:

- Distributional models are not able to resolve general hyperonyms:
 - (7) профессор 'professor' человек 'man'

- Distributional models are not able to resolve general hyperonyms:
 - (7) профессор 'professor' человек 'man'

RusVectores output for *npoфeccop*:

- доцент 0.68
- проф 0.66
- преподаватель 0.66
- ректор 0.66
- ученый 0.63
- академик 0.62
- доктор 0.59
- декан 0.58
- преподавать 0.57
- адъюнкт-профессор 0.57

Discussion

• Ontologies and thesauri should help with this:

 Ontologies and thesauri should help with this: профессор < научный работник < служащий(работник) < человек < живой организм

- Ontologies and thesauri should help with this: профессор < научный работник < служащий(работник) < человек < живой организм
- But some cases are problematic:
 - (8) дача таинственное жилище

- Ontologies and thesauri should help with this: профессор < научный работник < служащий(работник) < человек < живой организм
- But some cases are problematic:
 - (8) дача таинственное жилище

Ruthes output:

- дача < загородный дом < жидое здание < здание < недвижимое имущество
- жилище < место в пространстве

Dicsussion

• Even though there are some limitations, these approaches improves the quality

- Even though there are some limitations, these approaches improves the quality
- Further elaboration of each of them could improve the overall quality further:

- Even though there are some limitations, these approaches improves the quality
- Further elaboration of each of them could improve the overall quality further:
 - Using a NER system

- Even though there are some limitations, these approaches improves the quality
- Further elaboration of each of them could improve the overall quality further:
 - Using a NER system
 - Using distributional models in a more complex way

- Even though there are some limitations, these approaches improves the quality
- Further elaboration of each of them could improve the overall quality further:
 - Using a NER system
 - Using distributional models in a more complex way
 - Handling ontologies more carefully to minimize the amount of generated homonymy

Thank you! Any questions?

RuCor corpus: http://rucoref.maimbava.net Jupyter notebooks: https://github.com/max-ionov/rucoref/tree/ master/notebooks/coreference-dialog-2017