# Deep Learning and Language Adaptation

Serge Sharoff

Centre for Translation Studies University of Leeds

1 June 2017



# Outline



- Variety of languages
- Limitations of resources
- 2 Task: MT quality estimation
  - Language Adaptation via autoencoders
  - Experimental results
- 3 Task: Detection of cognates
  - Definition of cognates
  - Cross-lingual word embeddings
- 4 Tasks: POS and NER tagging
  - Relexicalisation via cognates
  - Neural Networks for Named-Entity Recognition

UNIVERSIT'

Э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• NER shared task at BSNLP'17

# Variety of languages

100 languages needed to cover 85% world's population 99-100. Balochi and Konkani,  $\approx$ 8M native speakers each



# Variety of languages

100 languages needed to cover 85% world's population 99-100. Balochi and Konkani,  $\approx$ 8M native speakers each





ヘロト ヘワト ヘヨト

### Universal grammar claims

#### Francis Bacon, (c1250)



## Universal grammar claims

#### Francis Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.



## Universal grammar claims

#### Francis Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur. Grammar is one and the same in its substance

in all languages, even if it accidentally varies.



### Universal grammar claims

#### Francis Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance

in all languages, even if it accidentally varies.

### Joakim Nivre, (c2015)



# Universal grammar claims

#### Francis Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance

in all languages, even if it accidentally varies.

### Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

(日)

# Universal grammar claims

#### Francis Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance

in all languages, even if it accidentally varies.

### Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

ightarrow UD with shared annotation for 47 languages



# Universal grammar claims

#### Francis Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance

in all languages, even if it accidentally varies.

### Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

イロト スポト メヨト メヨト

- ightarrow UD with shared annotation for 47 languages
  - Balochi and Konkani not covered yet

# Universal grammar claims

#### Francis Bacon, (c1250)

Grammatica una et eadem est secundum substanciam in omnibus linguis, licet accidentaliter varietur.

Grammar is one and the same in its substance

in all languages, even if it accidentally varies.

### Joakim Nivre, (c2015)

Grammar is the same in its substance in all languages, even if the annotation accidentally varies.

イロト スポト メヨト メヨト

Э

- ightarrow UD with shared annotation for 47 languages
  - Balochi and Konkani not covered yet
- BUT Farsi and Hindi are

| Similarity between languages | Task: MT quality estimation | Task: Detection of cognates | Tasks: POS and NER tagging |
|------------------------------|-----------------------------|-----------------------------|----------------------------|
| 0000                         |                             |                             |                            |



| Similarity between languages | Task: MT quality estimation | Task: Detection of cognates | Tasks: POS and NER tagging |
|------------------------------|-----------------------------|-----------------------------|----------------------------|
| 0000                         |                             |                             |                            |

| Languages  | UD    | Wiki  | МТ   |
|------------|-------|-------|------|
| Germanic   |       |       |      |
| Danish     | 89K   | 52M   |      |
| Dutch      | 286K  | 223M  |      |
| German     | 274K  | 783M  | 578K |
| Norwegian  | 245K  | 89M   |      |
| Swedish    | 131K  | 127 M |      |
| Romance    |       |       |      |
| Catalan    | 442K  | 181M  |      |
| French     | 367K  | 667M  | 432K |
| Italian    | 266K  | 433M  | 329K |
| Portuguese | 454K  | 222M  | 321K |
| Romanian   | 109K  | 63M   |      |
| Spanish    | 853K  | 530M  | 265K |
| Slavonic   |       |       |      |
| Bulgarian  | 124K  | 55M   |      |
| Czech      | 1671K | 110 M | 183K |
| Polish     | 70K   | 227M  | 213K |
| Russian    | 928K  | 420M  | 266K |
| Slovenian  | 136K  | 321M  |      |
| Ukrainian  | 10K   | 161M  |      |



| Similarity between languages | Task: MT quality estimation | Task: Detection of cognates | Tasks: POS and NER tagging |
|------------------------------|-----------------------------|-----------------------------|----------------------------|
| 0000                         |                             |                             |                            |

| Languages  | UD    | Wiki  | МТ   |
|------------|-------|-------|------|
| Germanic   |       |       |      |
| Danish     | 89K   | 52M   |      |
| Dutch      | 286K  | 223M  |      |
| German     | 274K  | 783M  | 578K |
| Norwegian  | 245K  | 89M   |      |
| Swedish    | 131K  | 127 M |      |
| Romance    |       |       |      |
| Catalan    | 442K  | 181M  |      |
| French     | 367K  | 667M  | 432K |
| Italian    | 266K  | 433M  | 329K |
| Portuguese | 454K  | 222M  | 321K |
| Romanian   | 109K  | 63M   |      |
| Spanish    | 853K  | 530M  | 265K |
| Slavonic   |       |       |      |
| Bulgarian  | 124K  | 55M   |      |
| Czech      | 1671K | 110 M | 183K |
| Polish     | 70K   | 227M  | 213K |
| Russian    | 928K  | 420M  | 266K |
| Slovenian  | 136K  | 321M  |      |
| Ukrainian  | 10K   | 161M  |      |



| Languages  | UD    | Wiki  | МТ   |
|------------|-------|-------|------|
| Germanic   |       |       |      |
| Danish     | 89K   | 52M   |      |
| Dutch      | 286K  | 223M  |      |
| German     | 274K  | 783M  | 578K |
| Norwegian  | 245K  | 89M   |      |
| Swedish    | 131K  | 127 M |      |
| Romance    |       |       |      |
| Catalan    | 442K  | 181M  |      |
| French     | 367K  | 667M  | 432K |
| Italian    | 266K  | 433M  | 329K |
| Portuguese | 454K  | 222M  | 321K |
| Romanian   | 109K  | 63M   |      |
| Spanish    | 853K  | 530M  | 265K |
| Slavonic   |       |       |      |
| Bulgarian  | 124K  | 55M   |      |
| Czech      | 1671K | 110 M | 183K |
| Polish     | 70K   | 227M  | 213K |
| Russian    | 928K  | 420M  | 266K |
| Slovenian  | 136K  | 321M  |      |
| Ukrainian  | 10K   | 161M  |      |

• Large number of rare events: p(break) = 0.00018308p(waves+break) = 0.00000005



| Similarity between languages | Task: MT quality estimation | Task: Detection of cognates | Tasks: POS and NER tagging |
|------------------------------|-----------------------------|-----------------------------|----------------------------|
| 0000                         |                             |                             |                            |

| Languages  | UD    | Wiki  | МТ   |
|------------|-------|-------|------|
| Germanic   |       |       |      |
| Danish     | 89K   | 52M   |      |
| Dutch      | 286K  | 223M  |      |
| German     | 274K  | 783M  | 578K |
| Norwegian  | 245K  | 89M   |      |
| Swedish    | 131K  | 127 M |      |
| Romance    |       |       |      |
| Catalan    | 442K  | 181M  |      |
| French     | 367K  | 667M  | 432K |
| Italian    | 266K  | 433M  | 329K |
| Portuguese | 454K  | 222M  | 321K |
| Romanian   | 109K  | 63M   |      |
| Spanish    | 853K  | 530M  | 265K |
| Slavonic   |       |       |      |
| Bulgarian  | 124K  | 55M   |      |
| Czech      | 1671K | 110M  | 183K |
| Polish     | 70K   | 227M  | 213K |
| Russian    | 928K  | 420M  | 266K |
| Slovenian  | 136K  | 321M  |      |
| Ukrainian  | 10K   | 161M  |      |

• Large number of rare events: p(break) = 0.00018308p(waves+break) = 0.00000005

waves break  $\rightarrow$  Fr: vagues fracassent, se cassent, se brisent, déferlent... the area where the waves break  $\rightarrow$  la zone de déferlement

イロト イポト イヨト イヨト

| Similarity between languages | Task: MT quality estimation | Task: Detection of cognates | Tasks: POS and NER tagging |
|------------------------------|-----------------------------|-----------------------------|----------------------------|
| 0000                         |                             |                             |                            |

| Languages  | UD    | Wiki  | МТ   |
|------------|-------|-------|------|
| Germanic   |       |       |      |
| Danish     | 89K   | 52M   |      |
| Dutch      | 286K  | 223M  |      |
| German     | 274K  | 783M  | 578K |
| Norwegian  | 245K  | 89M   |      |
| Swedish    | 131K  | 127 M |      |
| Romance    |       |       |      |
| Catalan    | 442K  | 181M  |      |
| French     | 367K  | 667M  | 432K |
| Italian    | 266K  | 433M  | 329K |
| Portuguese | 454K  | 222M  | 321K |
| Romanian   | 109K  | 63M   |      |
| Spanish    | 853K  | 530M  | 265K |
| Slavonic   |       |       |      |
| Bulgarian  | 124K  | 55M   |      |
| Czech      | 1671K | 110M  | 183K |
| Polish     | 70K   | 227M  | 213K |
| Russian    | 928K  | 420M  | 266K |
| Slovenian  | 136K  | 321M  |      |
| Ukrainian  | 10K   | 161M  |      |

• Large number of rare events: p(break) = 0.00018308p(waves+break) = 0.00000005

waves break  $\rightarrow$  Fr: vagues fracassent, se cassent, se brisent, déferlent... the area where the waves break  $\rightarrow$  la zone de déferlement

 Tagsets are sparse: 685 uk vs 710 ru



| Similarity between languages | Task: MT quality estimation | Task: Detection of cognates | Tasks: POS and NER tagging |
|------------------------------|-----------------------------|-----------------------------|----------------------------|
| 0000                         |                             |                             |                            |

| Languages  | UD    | Wiki  | МТ   |
|------------|-------|-------|------|
| Germanic   |       |       |      |
| Danish     | 89K   | 52M   |      |
| Dutch      | 286K  | 223M  |      |
| German     | 274K  | 783M  | 578K |
| Norwegian  | 245K  | 89M   |      |
| Swedish    | 131K  | 127 M |      |
| Romance    |       |       |      |
| Catalan    | 442K  | 181M  |      |
| French     | 367K  | 667M  | 432K |
| Italian    | 266K  | 433M  | 329K |
| Portuguese | 454K  | 222M  | 321K |
| Romanian   | 109K  | 63M   |      |
| Spanish    | 853K  | 530M  | 265K |
| Slavonic   |       |       |      |
| Bulgarian  | 124K  | 55M   |      |
| Czech      | 1671K | 110M  | 183K |
| Polish     | 70K   | 227M  | 213K |
| Russian    | 928K  | 420M  | 266K |
| Slovenian  | 136K  | 321M  |      |
| Ukrainian  | 10K   | 161M  |      |

• Large number of rare events: p(break) = 0.00018308p(waves+break) = 0.00000005

waves break  $\rightarrow$  Fr: vagues fracassent, se cassent, se brisent, déferlent... the area where the waves break  $\rightarrow$  la zone de déferlement

• Tagsets are sparse: 685 uk vs 710 ru

Still 45 single examples of feature compbinations in ru (Syntagrus):

колотыми

V,Asp=Imp,Case=Ins,Num=Plur,

Э

Tense=Past, Voice=Pass

イロト イポト イヨト イヨト

### My story about related languages

 Automatic generation of instructions (Bateman, et al 2000) Rule-based grammar for Bulgarian, Czech and Russian Используйте команду Multiline, чтобы соединить <u>две</u> точ<u>ки</u>. 'Use<sub>imp,pl</sub> the Multiline command to connect two points<sub>gen,sg</sub>'



### My story about related languages

- Automatic generation of instructions (Bateman, et al 2000) Rule-based grammar for Bulgarian, Czech and Russian Используйте команду Multiline, чтобы соединить <u>две</u> точ<u>ки</u>. 'Use<sub>imp,pl</sub> the Multiline command to connect two points<sub>gen,sg</sub>'
- Language resources for reading and translation skills Romanian via French (Ciobanu, et al 2006); Ukrainian via Russian (Kurella, et al 2008)



### My story about related languages

 Automatic generation of instructions (Bateman, et al 2000) Rule-based grammar for Bulgarian, Czech and Russian Используйте команду Multiline, чтобы соединить две точки. 'Use<sub>imp,pl</sub> the Multiline command to connect two points<sub>gen,sg</sub>'

(日)

- Language resources for reading and translation skills Romanian via French (Ciobanu, et al 2006); Ukrainian via Russian (Kurella, et al 2008)
- MT via related pivot languages (Babych, et al, 2007) uk→ru→de/en is far better than uk→de/en

### My story about related languages

- Automatic generation of instructions (Bateman, et al 2000) Rule-based grammar for Bulgarian, Czech and Russian Используйте команду Multiline, чтобы соединить <u>две</u> точ<u>ки</u>. 'Use<sub>imp,pl</sub> the Multiline command to connect two points<sub>gen,sg</sub>'
- Language resources for reading and translation skills Romanian via French (Ciobanu, et al 2006); Ukrainian via Russian (Kurella, et al 2008)
- MT via related pivot languages (Babych, et al, 2007) uk→ru→de/en is far better than uk→de/en
- Chris Brew on POS tagging for related languages Catalan via Spanish; Russian via Czech (Feldman, et al, 2006)

イロト イポト イヨト イヨト

Э

### My story about related languages

- Automatic generation of instructions (Bateman, et al 2000) Rule-based grammar for Bulgarian, Czech and Russian Используйте команду Multiline, чтобы соединить <u>две</u> точ<u>ки</u>. 'Use<sub>imp,pl</sub> the Multiline command to connect two points<sub>gen,sg</sub>'
- Language resources for reading and translation skills Romanian via French (Ciobanu, et al 2006); Ukrainian via Russian (Kurella, et al 2008)
- MT via related pivot languages (Babych, et al, 2007) uk→ru→de/en is far better than uk→de/en
- Chris Brew on POS tagging for related languages Catalan via Spanish; Russian via Czech (Feldman, et al, 2006)
- POS taggers for Kannada via Telugu (Reddy, Sharoff, 2011); and for Ukrainian via Russian (Babych, Sharoff, 2016)

UNIVERSITY OF

Э

イロト イロト イヨト イヨト

### My story about related languages

- Automatic generation of instructions (Bateman, et al 2000) Rule-based grammar for Bulgarian, Czech and Russian Используйте команду Multiline, чтобы соединить <u>две</u> точ<u>ки</u>. 'Use<sub>imp,pl</sub> the Multiline command to connect two points<sub>gen,sg</sub>'
- Language resources for reading and translation skills Romanian via French (Ciobanu, et al 2006); Ukrainian via Russian (Kurella, et al 2008)
- MT via related pivot languages (Babych, et al, 2007) uk→ru→de/en is far better than uk→de/en
- Chris Brew on POS tagging for related languages Catalan via Spanish; Russian via Czech (Feldman, et al, 2006)
- POS taggers for Kannada via Telugu (Reddy, Sharoff, 2011); and for Ukrainian via Russian (Babych, Sharoff, 2016)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

KEY: Common representation for related languages

# Outline



- Variety of languages
- Limitations of resources
- 2 Task: MT quality estimation
  - Language Adaptation via autoencoders
  - Experimental results
- 3 Task: Detection of cognates
  - Definition of cognates
  - Cross-lingual word embeddings
- Tasks: POS and NER tagging
  - Relexicalisation via cognates
  - Neural Networks for Named-Entity Recognition

UNIVERSITY

Э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• NER shared task at BSNLP'17



# Translation Quality Estimation (QE)

• Quality Estimation measures confidence in MT output without references, e.g., by predicting Post-Editing (Specia, et al 2013)





## Translation Quality Estimation (QE)

- Quality Estimation measures confidence in MT output without references, e.g., by predicting Post-Editing (Specia, et al 2013)
- **Complexity Indicators** Features related to difficulty in translating Source Text (ST), e.g., ST segment length, its language model and phrase table size.



# Translation Quality Estimation (QE)

- Quality Estimation measures confidence in MT output without references, e.g., by predicting Post-Editing (Specia, et al 2013)
- **Complexity Indicators** Features related to difficulty in translating Source Text (ST), e.g., ST segment length, its language model and phrase table size.
- Fluency Indicators Features related to how fluent MT output is, e.g., its language model.



# Translation Quality Estimation (QE)

- Quality Estimation measures confidence in MT output without references, e.g., by predicting Post-Editing (Specia, et al 2013)
- **Complexity Indicators** Features related to difficulty in translating Source Text (ST), e.g., ST segment length, its language model and phrase table size.
- Fluency Indicators Features related to how fluent MT output is, e.g., its language model.
- Adequacy Indicators Features related to how much meaning is preserved in MT output, e.g., translation model ratios, *semantic similarity via bilingual embeddings*.

イロト スポト メヨト メヨト

3

# Translation Quality Estimation (QE)

- Quality Estimation measures confidence in MT output without references, e.g., by predicting Post-Editing (Specia, et al 2013)
- **Complexity Indicators** Features related to difficulty in translating Source Text (ST), e.g., ST segment length, its language model and phrase table size.
- Fluency Indicators Features related to how fluent MT output is, e.g., its language model.
- Adequacy Indicators Features related to how much meaning is preserved in MT output, e.g., translation model ratios, *semantic similarity via bilingual embeddings*.

BUT Few languages available for training (Cs, Pl, Ru in Autodesk)

イロト イポト イヨト イヨト

Э

# Transferring classifiers (Rios, Sharoff, 2016)

• We know which Russian MT output is good





### Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good





### Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good
- BUT Polish feature space is different LM values, phrase table size, translation probabilities



## Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good
- BUT Polish feature space is different LM values, phrase table size, translation probabilities

### Self-Taught Learning (STL) for adapting *feature spaces*

## Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good

### **BUT** Polish feature space is different LM values, phrase table size, translation probabilities

### Self-Taught Learning (STL) for adapting *feature spaces*

 Build a function for transforming data using unlabelled Russian and Polish data (MT without PE)

イロト イポト イヨト イヨト
## Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good

#### **BUT** Polish feature space is different LM values, phrase table size, translation probabilities

#### Self-Taught Learning (STL) for adapting *feature spaces*

 Build a function for transforming data using unlabelled Russian and Polish data (MT without PE) Autoencoders: non-linear learnable dimensionality reduction

## Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good

#### **BUT** Polish feature space is different LM values, phrase table size, translation probabilities

#### Self-Taught Learning (STL) for adapting *feature spaces*

 Build a function for transforming data using unlabelled Russian and Polish data (MT without PE) Autoencoders: non-linear learnable dimensionality reduction Autoencoder vs PCA vs MDS, SOM or t-SNE

イロト イポト イヨト イヨト

# Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good
- **BUT** Polish feature space is different LM values, phrase table size, translation probabilities

#### Self-Taught Learning (STL) for adapting *feature spaces*

 Build a function for transforming data using unlabelled Russian and Polish data (MT without PE) Autoencoders: non-linear learnable dimensionality reduction Autoencoder vs PCA vs MDS, SOM or t-SNE

イロト スポト メヨト メヨト

Irain a prediction model on transformed Russian data

# Transferring classifiers (Rios, Sharoff, 2016)

- We know which Russian MT output is good
- Polish MT output with similar features is likely to be good
- **BUT** Polish feature space is different LM values, phrase table size, translation probabilities

#### Self-Taught Learning (STL) for adapting *feature spaces*

 Build a function for transforming data using unlabelled Russian and Polish data (MT without PE) Autoencoders: non-linear learnable dimensionality reduction Autoencoder vs PCA vs MDS, SOM or t-SNE

イロト イポト イヨト イヨト

- Train a prediction model on transformed Russian data
- O Apply the model to transformed Polish data

## Experimental results

#### • Baseline prediction of PE effort:

| Upper baseline ( <b>es</b> ) | MAE         | 0.14 |
|------------------------------|-------------|------|
|                              | RSME        | 0.18 |
|                              | Correlation | 0.53 |



### Experimental results

• Baseline prediction of PE effort:

| Upper baseline ( <b>es</b> ) | MAE         | 0.14 |
|------------------------------|-------------|------|
|                              | RSME        | 0.18 |
|                              | Correlation | 0.53 |

• Our Language Adaptation method:

| es                          | $\rightarrow$ | pt   | it   | fr   |
|-----------------------------|---------------|------|------|------|
|                             | MAE           | 0.14 | 0.16 | 0.17 |
| STL                         | RMSE          | 0.17 | 0.21 | 0.22 |
|                             | Correlation   | 0.52 | 0.40 | 0.30 |
| Baseline                    | MAE           | 0.16 | 0.18 | 0.18 |
| Train: es<br>Test: pt/it/fr | RMSE          | 0.20 | 0.23 | 0.23 |
|                             | Correlation   | 0.35 | 0.26 | 0.24 |

# Power of language adaptation

| Upper baseline (ru) | MAE         | 0.18 |
|---------------------|-------------|------|
|                     | RSME        | 0.27 |
|                     | Correlation | 0.47 |



# Power of language adaptation

| Upper baseline (ru) | MAE         | 0.18 |
|---------------------|-------------|------|
|                     | RSME        | 0.27 |
|                     | Correlation | 0.47 |

| en-ru       | $\rightarrow$ | en-cs | en-pl |
|-------------|---------------|-------|-------|
|             | MAE           | 0.19  | 0.19  |
| STL         | RMSE          | 0.25  | 0.25  |
|             | Correlation   | 0.41  | 0.46  |
| Baseline    | MAE           | 0.20  | 0.21  |
| Train: ru   | RMSE          | 0.26  | 0.27  |
| lest: cs/pl | Correlation   | 0.32  | 0.33  |



# Power of language adaptation

| Upper baseline (ru) | MAE         | 0.18 |
|---------------------|-------------|------|
|                     | RSME        | 0.27 |
|                     | Correlation | 0.47 |

| en-ru       | $\rightarrow$ | en-cs | en-pl |
|-------------|---------------|-------|-------|
|             | MAE           | 0.19  | 0.19  |
| STL         | RMSE          | 0.25  | 0.25  |
|             | Correlation   | 0.41  | 0.46  |
| Baseline    | MAE           | 0.20  | 0.21  |
| Train: ru   | RMSE          | 0.26  | 0.27  |
| lest: cs/pl | Correlation   | 0.32  | 0.33  |

| en-es       | $\rightarrow$ | en-cs | en-pl |
|-------------|---------------|-------|-------|
|             | MAE           | 0.22  | 0.25  |
| STL         | RMSE          | 0.29  | 0.32  |
|             | Correlation   | 0.08  | 0.11  |
| Baseline    | MAE           | 0.23  | 0.22  |
| Train: es   | RSME          | 0.31  | 0.29  |
| lest: cs/pl | Correlation   | 0.11  | 0.09  |



# Outline

#### Similarity between languages

- Variety of languages
- Limitations of resources

#### 2 Task: MT quality estimation

Language Adaptation via autoencoders
Experimental results

#### **3** Task: Detection of cognates

- Definition of cognates
- Cross-lingual word embeddings

### 4 Tasks: POS and NER tagging

- Relexicalisation via cognates
- Neural Networks for Named-Entity Recognition

UNIVERSITY

Э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• NER shared task at BSNLP'17



 Common etymology držati, držet, держать, держати or borrowing computer→компьютер, комп'ютер počítač, računalnik





- Common etymology držati, držet, держать, держати or borrowing computer→компьютер, комп'ютер počítač, računalnik
- False friends вредный 'harmful' vs vreden 'worthy'





- Common etymology držati, držet, держать, держати or borrowing computer→компьютер, комп'ютер počítač, računalnik
- False friends вредный 'harmful' vs vreden 'worthy'
- Partial friends жена (in Russian 'wife') vs žena (in Slovenian: 'wife' OR 'woman')





- Common etymology držati, držet, держать, держати or borrowing computer→компьютер, комп'ютер počítač, računalnik
- False friends вредный 'harmful' vs vreden 'worthy'
- Partial friends жена (in Russian 'wife') vs žena (in Slovenian: 'wife' OR 'woman')
- Frequency difference *debuxo* vs *dibujo* 'a drawing' (Portuguese and Spanish), ranks 100,000 vs 2,000 approx (*desenho* is more common in Portuguese)

(日)

Э

### Cross-lingual word embeddings (Mikolov, 2013)







## Cross-lingual word embeddings (Mikolov, 2013)



Monolingual corpora for word embeddings (Wikipedias)





## Cross-lingual word embeddings (Mikolov, 2013)



- Monolingual corpora for word embeddings (Wikipedias)
- Linear transformation or MLP for mapping embeddings

$$\min_{\mathbf{W}} \sum ||\mathbf{W}e_i - f_i||^2$$





# Cross-lingual word embeddings (Mikolov, 2013)



- Monolingual corpora for word embeddings (Wikipedias)
- Linear transformation or MLP for mapping embeddings

$$\min_{\mathbf{W}} \sum ||\mathbf{W}e_i - f_i||^2$$

- Small (1-2kW) bilingual dictionaries from iWiki links:
  - (sv) Slaget om Filippinen
  - (nl) Lijst van Poolse schrijvers
  - (pl) Z życia marionetek
  - (pl) Wskaźnik jakości życia

(de) Schlacht um die Philippinen (de) Liste polnischer Schriftsteller (ru) Из жизни марионеток (ru) Индекс качества жиланито гиско

### Levenshtein distances

 Baseline Levenshtein distance (LD): *Philippinen* → *Filippinen* : 1 deletion, 1 substitution *Schlacht* → *Slaget* : 3 deletions, 1 substitution



### Levenshtein distances

- Baseline Levenshtein distance (LD): *Philippinen* → *Filippinen* : 1 deletion, 1 substitution *Schlacht* → *Slaget* : 3 deletions, 1 substitution
- Weighted Levenshtein Distance (WLD) for cognates Sch La ch t
  - S laget

UNIVERSITY OF

Ξ

イロト イポト イヨト イヨト

### Levenshtein distances

- Baseline Levenshtein distance (LD): *Philippinen* → *Filippinen* : 1 deletion, 1 substitution *Schlacht* → *Slaget* : 3 deletions, 1 substitution
- Weighted Levenshtein Distance (WLD) for cognates Sch La ch t

$$p(sch 
ightarrow s) = 0.7; p(e 
ightarrow o) = 0.5$$



### Levenshtein distances

- Baseline Levenshtein distance (LD): *Philippinen* → *Filippinen* : 1 deletion, 1 substitution *Schlacht* → *Slaget* : 3 deletions, 1 substitution
- Weighted Levenshtein Distance (WLD) for cognates Sch La ch t

$$p(sch 
ightarrow s) = 0.7; \, p(e 
ightarrow o) = 0.5$$

$$WLD = \frac{\sum_{(e,f) \in al(s_e,s_f)} (1 - p(f|e))}{\max(len(s_e), len(s_f))}$$

UNIVERSITY OF

3

イロト イポト イヨト イヨト

## Levenshtein distances

- Baseline Levenshtein distance (LD): *Philippinen* → *Filippinen* : 1 deletion, 1 substitution *Schlacht* → *Slaget* : 3 deletions, 1 substitution
- Weighted Levenshtein Distance (WLD) for cognates Sch La ch t

$$p(sch 
ightarrow s) = 0.7; \, p(e 
ightarrow o) = 0.5$$

$$WLD = \frac{\sum_{(e,f) \in al(s_e,s_f)} (1 - p(f|e))}{\max(len(s_e), len(s_f))}$$

UNIVERSITY OF

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 Also WLD works across charsets: marionetek ży\*cia марионеток жизни

### Distance concentration and hubness

• More items at the same distance when d grows



### Distance concentration and hubness

- More items at the same distance when d grows
- More hubby items as d grows N<sub>k</sub>(x) number of times x is among k nearest neighbours



### Distance concentration and hubness

- More items at the same distance when d grows
- More hubby items as d grows N<sub>k</sub>(x) number of times x is among k nearest neighbours

| #  | Standard  | #  | With GC      |
|----|-----------|----|--------------|
| 77 | bennett   | 10 | arranged     |
| 75 | curtis    | 10 | corresponded |
| 59 | featuring | 10 | exists       |
| 58 | laurie    | 10 | learnt       |
| 56 | james     | 10 | milanese     |
| 56 | miller    | 10 | represents   |
| 55 | elliot    | 10 | traceable    |
| 54 | gavin     | 9  | association  |
| 51 | convinced | 9  | chosen       |
| 47 | keith     | 9  | coincides    |
| 46 | barker    | 9  | consist      |
| 46 | titled    | 9  | forwarded    |
| 45 | persuaded | 9  | grade        |



#### Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014)TM as in Mikolov et al. (2013b)0.349CCA as in Faruqui and Dyer (2014)0.378Orth as in Artetxe et al. (2016)0.393GC as in Dinu et al. (2014)0.377



#### Evaluation of cognate detection for en-it

Vectors from (Dinu, et al. 2014)TM as in Mikolov et al. (2013b)0.349CCA as in Faruqui and Dyer (2014)0.378Orth as in Artetxe et al. (2016)0.393GC as in Dinu et al. (2014)0.377



#### Evaluation of cognate detection for en-it

 Vectors from (Dinu, et al. 2014)

 TM as in Mikolov et al. (2013b)
 0.349

 CCA as in Faruqui and Dyer (2014)
 0.378

 Orth as in Artetxe et al. (2016)
 0.393

 GC as in Dinu et al. (2014)
 0.377

 GC+LD
 0.501

 GC+WLD
 0.531



### Evaluation of cognate detection for en-it

| Vectors from (Dinu, et al. 2014   | )     |
|-----------------------------------|-------|
| TM as in Mikolov et al. (2013b)   | 0.349 |
| CCA as in Faruqui and Dyer (2014) | 0.378 |
| Orth as in Artetxe et al. (2016)  | 0.393 |
| GC as in Dinu et al. (2014)       | 0.377 |
| GC+LD                             | 0.501 |
| GC+WLD                            | 0.531 |
| Vectors from (Bojanowski, et al.  | 2016) |
| FT+Orth                           | 0.529 |
| FT+Orth+GC                        | 0.477 |
| FT+Orth+GC+WLD                    | 0.616 |



### Evaluation of cognate detection for en-it

| Vectors from (Dinu, et al. 2014   | .)    |
|-----------------------------------|-------|
| TM as in Mikolov et al. (2013b)   | 0.349 |
| CCA as in Faruqui and Dyer (2014) | 0.378 |
| Orth as in Artetxe et al. (2016)  | 0.393 |
| GC as in Dinu et al. (2014)       | 0.377 |
| GC+LD                             | 0.501 |
| GC+WLD                            | 0.531 |
| Vectors from (Bojanowski, et al.  | 2016) |
| FT+Orth                           | 0.529 |
| FT+Orth+GC                        | 0.477 |
| FT+Orth+GC+WLD                    | 0.616 |
| FT+Orth (c)                       | 0.562 |
| FT+Orth+GC (c)                    | 0.601 |
|                                   |       |

UNIVERSITY OF LEEDS

・ロト ・西ト ・ヨト ・ヨー うらう

### Dictionaries for Slavonic languages

Best En-It (c) without WLD: 0.601 Best En-It (c) with WLD: 0.681



### **Dictionaries for Slavonic languages**

Best En-It (c) without WLD: 0.601 Best En-It (c) with WLD: 0.681

• Dictionary induction without WLD:

|          | sl-hr | sl-cs | sl-pl | sl-ru | ru-uk | cs-sk |
|----------|-------|-------|-------|-------|-------|-------|
| Prec@1:  | 0.429 | 0.611 | 0.584 | 0.566 | 0.929 | 0.814 |
| Prec@10: | 0.688 | 0.868 | 0.842 | 0.818 | 0.976 | 0.971 |



## **Dictionaries for Slavonic languages**

Best En-It (c) without WLD: 0.601 Best En-It (c) with WLD: 0.681

• Dictionary induction without WLD:

0.963

۵

Prec@10:

|                                | sl-hr | sl-cs | sl-pl | sl-ru | ru-uk | cs-sk |
|--------------------------------|-------|-------|-------|-------|-------|-------|
| Prec@1:                        | 0.429 | 0.611 | 0.584 | 0.566 | 0.929 | 0.814 |
| Prec@10:                       | 0.688 | 0.868 | 0.842 | 0.818 | 0.976 | 0.971 |
| Dictionary induction with WLD: |       |       |       |       |       |       |
|                                | sl-hr | sl-cs | sl-pl | sl-ru | ru-uk | cs-sk |
| Prec@1:                        | 0.840 | 0.763 | 0.751 | 0.662 | 0.945 | 0.910 |



イロト イポト イヨト イヨト

UNIVERSITY OF L

Ξ

### Morphological structure of cognate words

• There are problems with full forms:

|      | French          | Italian  |
|------|-----------------|----------|
| Sing | malad <b>ie</b> | malattia |



### Morphological structure of cognate words

• There are problems with full forms:

|      | French          | Italian  |
|------|-----------------|----------|
| Sing | malad <b>ie</b> | malattia |


### Morphological structure of cognate words

• There are problems with full forms:

|      | French          | Italian          |  |  |
|------|-----------------|------------------|--|--|
| Sing | malad <b>ie</b> | malattia         |  |  |
|      |                 |                  |  |  |
| Plur | maladies        | malatt <b>ie</b> |  |  |



### Morphological structure of cognate words

• There are problems with full forms:

|      | French          | Italian          |  |  |
|------|-----------------|------------------|--|--|
| Sing | malad <b>ie</b> | malattia         |  |  |
|      |                 |                  |  |  |
| Plur | maladies        | malatt <b>ie</b> |  |  |

#### ru-uk cognates for green

nominative зелёный, зелёная genitive зелёного, зелёной dative зелён**ому**, зелёной instrumental зелёным, зелёной prepositional зелён**ом**, зелёной

зелений, зелена, зеленого, зеленої зеленому, зеленій зеленим, зеленою зеленому, зеленій



## Morphological structure of cognate words

• There are problems with full forms:

|      | French          | Italian          |  |  |
|------|-----------------|------------------|--|--|
| Sing | malad <b>ie</b> | malattia         |  |  |
|      |                 |                  |  |  |
| Plur | maladies        | malatt <b>ie</b> |  |  |

#### ru-uk cognates for green

| зелёный, зелёная          | зелений, зелена,                                                                                                   |
|---------------------------|--------------------------------------------------------------------------------------------------------------------|
| зелёного, зелёной         | зеленого, зелен <b>ої</b>                                                                                          |
| зелён <b>ому</b> ,зелёной | зеленому, зелен <b>ій</b>                                                                                          |
| зелёным, зелёной          | зеленим, зелен <b>ою</b>                                                                                           |
| зелён <b>ом</b> , зелёной | зеленому, зелені <b>й</b>                                                                                          |
|                           | зелёный, зелёная<br>зелёного,зелёной<br>зелён <b>ому</b> ,зелёной<br>зелёным, зелёной<br>зелён <b>ом</b> , зелёной |

+ = > + @ > + = > + = > = = =

UNIVERSITY O

• Stem alterations are important too: Америки<sub>gen</sub> →Америки

## Morphological structure of cognate words

• There are problems with full forms:

|      | French          | Italian          |  |  |
|------|-----------------|------------------|--|--|
| Sing | malad <b>ie</b> | malattia         |  |  |
|      |                 |                  |  |  |
| Plur | maladies        | malatt <b>ie</b> |  |  |

#### ru-uk cognates for green

| nominative    | зелёный, зелёная          | зелений, зелена,          |
|---------------|---------------------------|---------------------------|
| genitive      | зелёного, зелёной         | зеленого, зелен <b>ої</b> |
| dative        | зелён <b>ому</b> ,зелёной | зеленому, зелен <b>ій</b> |
| instrumental  | зелёным, зелёной          | зеленим, зелен <b>ою</b>  |
| prepositional | зелён <b>ом</b> , зелёной | зеленому, зелен <b>ій</b> |

UNIVERSITY O

• Stem alterations are important too:  $A мерики_{gen} \rightarrow A мерики$  $A мерике_{dat} \rightarrow A мерицi$ 

# Outline

#### Similarity between languages

- Variety of languages
- Limitations of resources

#### 2 Task: MT quality estimation

- Language Adaptation via autoencoders
- Experimental results

#### 3 Task: Detection of cognates

- Definition of cognates
- Cross-lingual word embeddings

#### 4 Tasks: POS and NER tagging

- Relexicalisation via cognates
- Neural Networks for Named-Entity Recognition

イロト イポト イヨト イヨト

Э

• NER shared task at BSNLP'17

# Cross-lingual tagging and parsing

HetisheelandersgelopendanikdachtPRONAUXADVADVVERBSCONJPRONVERBEsistganzandersgelaufenalsichdachte



## Cross-lingual tagging and parsing

Het is heel anders gelopen dan ik dacht PRON AUX ADV ADV VERB SCONJ PRON VERB Es ist ganz anders gelaufen als ich dachte

 De-lexicalisation (Feldman, et al, 2006; Mcdonald, et al 2011; Reddy, Sharoff, 2011)



## Cross-lingual tagging and parsing

Het is heel anders gelopen dan ik dacht PRON AUX ADV ADV VERB SCONJ PRON VERB Es ist ganz anders gelaufen als ich dachte

• De-lexicalisation (Feldman, et al, 2006; Mcdonald, et al 2011; Reddy, Sharoff, 2011)

Это прошло совсем иначе чем я думал PRON VERB ADV ADV SCONJ PRON VERB



# Cross-lingual tagging and parsing

Het is heel anders gelopen dan ik dacht PRON AUX ADV ADV VERB SCONJ PRON VERB Es ist ganz anders gelaufen als ich dachte

• De-lexicalisation (Feldman, et al, 2006; Mcdonald, et al 2011; Reddy, Sharoff, 2011)

Это прошло совсем иначе чем я думал PRON VERB ADV ADV SCONJ PRON VERB 它和我想的完全不同 it and I thought of completely differ PRON CCONJ PRON NOUN PART ADV ADJ



## Cross-lingual tagging and parsing

Het is heel anders gelopen dan ik dacht PRON AUX ADV ADV VERB SCONJ PRON VERB Es ist ganz anders gelaufen als ich dachte

 De-lexicalisation (Feldman, et al, 2006; Mcdonald, et al 2011; Reddy, Sharoff, 2011)

Это прошло совсем иначе чем я думал PRON VERB ADV ADV SCONJ PRON VERB 它和我想的完全不同 it and I thought of completely differ PRON CCONJ PRON NOUN PART ADV ADJ

UNIVERSITY OF

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• Projection from parallel corpora (Tiedemann, 2014): word alignment with pruning

## Cross-lingual tagging and parsing

HetisheelandersgelopendanikdachtPRONAUXADVADVVERBSCONJPRONVERBEsistganzandersgelaufenalsichdachte

 De-lexicalisation (Feldman, et al, 2006; Mcdonald, et al 2011; Reddy, Sharoff, 2011)

Это прошло совсем иначе чем я думал PRON VERB ADV ADV SCONJ PRON VERB 它和我想的完全不同 it and I thought of completely differ PRON CCONJ PRON NOUN PART ADV ADJ

- Projection from parallel corpora (Tiedemann, 2014): word alignment with pruning
- Machine Translation: replacing parallel corpora with Machine Translation

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Э

#### **Relexicalisation via cognates**





### Relexicalisation via cognates



| Найкраще | це  | робити   | в | русі   |  |
|----------|-----|----------|---|--------|--|
| найкраще | это | работать | В | россии |  |



### Relexicalisation via cognates



|               | Найкраще      | це робити |            | в   | русі    |
|---------------|---------------|-----------|------------|-----|---------|
|               | найкраще      | это       | работать   | В   | россии  |
| $\rightarrow$ | 'this is best | done      | in motion' | (ру | x→pyci) |



#### **Relexicalisation via cognates**



| Найкраще це |     | робити   | в | русі   |
|-------------|-----|----------|---|--------|
| найкраще    | это | работать | В | россии |

- ightarrow 'this is best done in motion' (*pyx*ightarrow*pyci*)
  - Representation of ambiguity in embeddings



#### **Relexicalisation via cognates**



• Relexicalisation problems:

| Найкраще | це  | робити   | в | русі   |  |
|----------|-----|----------|---|--------|--|
| найкраще | это | работать | В | россии |  |

- ightarrow 'this is best done in motion' (*pyx*ightarrow*pyci*)
  - Representation of ambiguity in embeddings
  - Train: tags from the donor, words from the recipient

イロト イロト イヨト イヨ

#### **Relexicalisation via cognates**



| Найкраще | це  | робити   | в | русі   |
|----------|-----|----------|---|--------|
| найкраще | это | работать | В | россии |

- ightarrow 'this is best done in motion' (*pyx*ightarrow*pyci*)
  - Representation of ambiguity in embeddings
  - Train: tags from the donor, words from the recipient
  - Disambiguated RNC with Ukrainian cognates using TnT: ru: 0.95 (Sharoff, Nivre, 2011), uk: 0.92 (Babych, Sharoff, 2016)

#### Neural Networks experiments

• Recurrent Neural Language Models (Bengio, et al 2003)



### Neural Networks experiments

 Recurrent Neural Language Models (Bengio, et al 2003) (Karpathy, 2015) character RNN on Shakespeare: PANDARUS: Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.



### Neural Networks experiments

- Recurrent Neural Language Models (Bengio, et al 2003) (Karpathy, 2015) character RNN on Shakespeare: PANDARUS: Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.
- Neural Machine Translation (Bahdanau, et al 2014)

イロト イポト イヨト イヨト

Э

### Neural Networks experiments

 Recurrent Neural Language Models (Bengio, et al 2003) (Karpathy, 2015) character RNN on Shakespeare: PANDARUS: Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death,

I should not sleep.

- Neural Machine Translation (Bahdanau, et al 2014)
- Sequence-to-sequence models (Collobert, et al 2011)

イロト イポト イヨト イヨト

Э

Similarity between languages Task: MT quality estimation Task: Detection of cognates 0000 Coole Coole

## NER shared task

 "A glej, v pradavnem budističnem tekstu Madhyamika/B-misc Karika/I-misc Vrrti/I-misc piše : » Budha/B-per je učil"



Similarity between languages Task: MT quality estimation Task: Detection of cognates OCO

## NER shared task

 "A glej, v pradavnem budističnem tekstu Madhyamika/B-misc Karika/I-misc Vrrti/I-misc piše : » Budha/B-per je učil"

NN model (Lample et al, 2016) LSTM: 89%; LSTM+CRF: 91%



Similarity between languages Task: MT quality estimation Task: Detection of cognates OCO

# NER shared task

 "A glej, v pradavnem budističnem tekstu Madhyamika/B-misc Karika/I-misc Vrrti/I-misc piše : » Budha/B-per je učil"

Word embeddings POS tags Additional features NN model (Lample et al, 2016) LSTM: 89%; LSTM+CRF: 91%

• Embeddings from recipient Wikipedias (2015), training on Slovenian SSJ500 (200kW)



・ロト ・ 理ト ・ ヨト ・ ヨ

JNIVERSITY OF L

## Shared task results: F1

#### • JHU: SVM tagger with projections using on Europarl/UN



## Shared task results: F1

- JHU: SVM tagger with projections using on Europarl/UN
- JRC: large gazetteers



## Shared task results: F1

- JHU: SVM tagger with projections using on Europarl/UN
- JRC: large gazetteers

| • EC: | CS   | hr   | pl   | ru   | s    | ua   |      |         |
|-------|------|------|------|------|------|------|------|---------|
|       | 47.2 | 46.2 | 44.8 | 46.5 | 47.8 | 10.8 | JHU  |         |
|       | EC.  | 41.2 | 30.0 | 34.6 | 53.7 | 37.5 | 20.8 | JRC     |
|       |      | 47.7 | 44.3 | 44.2 | 33.6 | 59.5 | 13.7 | Sharoff |



## Shared task results: F1

- JHU: SVM tagger with projections using on Europarl/UN
- JRC: large gazetteers

| - | EC.    | CS           | hr           | pl           | ru                  | s            | ua                  |            |
|---|--------|--------------|--------------|--------------|---------------------|--------------|---------------------|------------|
|   |        | 47.2         | 46.2         | 44.8         | 46.5                | 47.8         | 10.8                | JHU        |
| • | LC.    | 41.2         | 30.0         | 34.6         | 53.7                | 37.5         | 20.8                | JRC        |
|   |        | 47.7         | 44.3         | 44.2         | 33.6                | 59.5         | 13.7                | Sharoff    |
|   |        | cs           | hr           | pl           | ru                  | s            | ua                  |            |
|   |        |              |              |              |                     |              |                     |            |
| _ | Trump  | 46.1         | 50.4         | 41.0         | 41.8                | 46.2         | 33.2                | JHU        |
| ۹ | Trump: | 46.1<br>42.2 | 50.4<br>37.4 | 41.0<br>48.0 | 41.8<br><b>55.6</b> | 46.2<br>44.2 | 33.2<br><b>50.8</b> | JHU<br>JRC |



## Closer look at SI-Hr transfer

۵

| Slovenian: Upper baseline |       |       |       |     |  |  |  |
|---------------------------|-------|-------|-------|-----|--|--|--|
| sl→sl                     | Р     | R     | F1    | Ν   |  |  |  |
| Accuracy: 97.47           | 74.08 | 73.87 | 73.98 |     |  |  |  |
| loc                       | 81.92 | 76.72 | 79.23 | 354 |  |  |  |
| misc                      | 30.77 | 17.52 | 22.33 | 78  |  |  |  |
| org                       | 64.06 | 57.68 | 60.70 | 217 |  |  |  |
| per                       | 77.49 | 88.73 | 82.73 | 813 |  |  |  |



## Closer look at SI-Hr transfer

| <ul> <li>Slovenian: Upper baseline</li> </ul> |                                                                                                   |                                                    |                                                  |                                               |                        |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------|--|--|
|                                               | sl→s                                                                                              | Р                                                  | R                                                | F1                                            | Ν                      |  |  |
|                                               | Accuracy: 97.47                                                                                   | 74.08                                              | 73.87                                            | 73.98                                         |                        |  |  |
|                                               | loc                                                                                               | 81.92                                              | 76.72                                            | 79.23                                         | 354                    |  |  |
|                                               | misc                                                                                              | 30.77                                              | 17.52                                            | 22.33                                         | 78                     |  |  |
|                                               | org                                                                                               | 64.06                                              | 57.68                                            | 60.70                                         | 217                    |  |  |
|                                               | per                                                                                               | 77.49                                              | 88.73                                            | 82.73                                         | 813                    |  |  |
|                                               |                                                                                                   |                                                    |                                                  |                                               |                        |  |  |
| •                                             | Croatian SE Times                                                                                 | test co                                            | rpus (18                                         | 0kW)                                          |                        |  |  |
| •                                             | $\begin{array}{c} {\sf Croatian} \ {\sf SE} \ {\sf Times} \\ {\sf sl} {\to} {\sf hr} \end{array}$ | test co<br>P                                       | rpus (18<br>R                                    | 0kW)<br>F1                                    | Ν                      |  |  |
| •                                             | Croatian SE Times<br>sl→hr<br>Accuracy: 93.98                                                     | test con<br>P<br>67.40                             | rpus (18<br>R<br>63.64                           | 0kW)<br>F1<br>65.47                           | N                      |  |  |
| •                                             | Croatian SE Times<br>sl→hr<br>Accuracy: 93.98<br>loc                                              | test con<br>P<br>67.40<br>81.66                    | rpus (18<br>R<br>63.64<br>61.27                  | 0kW)<br>F1<br>65.47<br>70.01                  | N<br>709               |  |  |
| •                                             | Croatian SE Times<br>sl→hr<br>Accuracy: 93.98<br>loc<br>misc                                      | test con<br>P<br>67.40<br>81.66<br>0.00            | rpus (18<br>R<br>63.64<br>61.27<br>0.00          | 0kW)<br>F1<br>65.47<br>70.01<br>0.00          | N<br>709<br>105        |  |  |
| •                                             | Croatian SE Times<br>sl→hr<br>Accuracy: 93.98<br>loc<br>misc<br>org                               | E test con<br>P<br>67.40<br>81.66<br>0.00<br>56.40 | rpus (18<br>R<br>63.64<br>61.27<br>0.00<br>59.11 | 0kW)<br>F1<br>65.47<br>70.01<br>0.00<br>57.73 | N<br>709<br>105<br>851 |  |  |

UNIVERSITY OF LEEDS

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲□ ● ��?

## Gold vs test results

| en                          | hr         | Gold  | Output |
|-----------------------------|------------|-------|--------|
| Bosnian                     | Bosanska   | 0     | 0      |
| model                       | manekenka  | 0     | 0      |
| in                          | u          | 0     | 0      |
| dress                       | modelu     | 0     | 0      |
| from                        | iz         | 0     | 0      |
| $\operatorname{collection}$ | kolekcije  | Ο     | 0      |
| Omnia                       | Omnia      | 0     | B-misc |
| Mei                         | Mei        | 0     | I-misc |
| Serbian                     | srbijanske | 0     | I-misc |
| fashion                     | modne      | 0     | I-misc |
| designer                    | kreatorice | 0     | I-misc |
| Slavica                     | Slavice    | B-per | B-per  |
| Aleksijev                   | Aleksijev  | l-per | l-per  |

| en       | hr          | Gold | Output |
|----------|-------------|------|--------|
| at       | na          | 0    | 0      |
| autumn   | jesenjem    | 0    | 0      |
| Sarajevo | Sarajevskom | 0    | B-org  |
| week     | tjednu      | 0    | l-org  |
| fashion  | mode        | 0    | l-org  |
| 2006     | 2006        | 0    | 0      |
|          |             | 0    | 0      |
|          | (           | 0    | 0      |
| Getty    | Getty       | 0    | B-misc |
| Images   | Images      | 0    | I-misc |
|          | )           | 0    | 0      |

メロト メポト メモト メモト

UNIVERSITY OF LEEDS

590

E

# NLP: slipping into the Dark Ages

• Hand-made rules capture meaning Human intuition and knowledge



## NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)



## NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)



# NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)

#### Jelinek vs Church



# NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)

#### Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up


## NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)

#### Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data



## NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)

#### Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data



### NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)

#### Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data

### Neil Lawrence quoted by Chris Manning



## NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)

### Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data

### Neil Lawrence quoted by Chris Manning

NLP is kind of like a rabbit in the headlights waiting to be flattened by the Deep Learning steam train.



## NLP: slipping into the Dark Ages

- Hand-made rules capture meaning Human intuition and knowledge
- Machine learning: interpretable feature spaces and black boxes of algorithms (Random Forest or SVM<sup>??</sup>)

### Jelinek vs Church

Jelinek: Every time I fire a linguist, the performance goes up

Church: Fire everybody and buy more data

### Neil Lawrence quoted by Chris Manning

NLP is kind of like a rabbit in the headlights waiting to be flattened by the Deep Learning steam train.

イロト イポト イヨト イヨト

• In Deep Learning everything is a black box

# The Zero Theorem by Terry Gilliam



• "Unreasonable effectiveness of Neural Networks" Easy to outperform other approaches



- "Unreasonable effectiveness of Neural Networks" Easy to outperform other approaches
- ?? Lots of hype and long training times Often Deep Learning is much more shallow



- "Unreasonable effectiveness of Neural Networks" Easy to outperform other approaches
- ?? Lots of hype and long training times Often Deep Learning is much more shallow
- ?? Winning by a small margin: Design new architecture or Buy more data? 'Language is a large number of rare events'

A D F A B F A B F A B F

- "Unreasonable effectiveness of Neural Networks" Easy to outperform other approaches
- ?? Lots of hype and long training times Often Deep Learning is much more shallow
- ?? Winning by a small margin:
  Design new architecture or Buy more data?
  'Language is a large number of rare events'
- From lots of data to one-shot learning: Marco Baroni's wampimuk

- "Unreasonable effectiveness of Neural Networks" Easy to outperform other approaches
- ?? Lots of hype and long training times Often Deep Learning is much more shallow
- ?? Winning by a small margin:
  Design new architecture or Buy more data?
  'Language is a large number of rare events'
- From lots of data to one-shot learning: Marco Baroni's wampimuk
- Very simple data integration with NNs
  - ightarrow Easy to create shared representations



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- "Unreasonable effectiveness of Neural Networks" Easy to outperform other approaches
- ?? Lots of hype and long training times Often Deep Learning is much more shallow
- ?? Winning by a small margin:
  Design new architecture or Buy more data?
  'Language is a large number of rare events'
- From lots of data to one-shot learning: Marco Baroni's wampimuk
- $\bullet$  Very simple data integration with NNs  $\rightarrow$  Easy to create shared representations
- Place for linguistics: what is shared?