Exploiting Russian Word Embeddings for Automated Grammeme Prediction

Alexey Romanov alexey.romanov@phystech.edu

ABBYY Moscow Institute of Physics and Technology

31 May 2017

Grammemes in the Russian Language

- **Grammatical category** grammatical property with mutually exclusive possible values.
- Grammeme specific value of grammatical category.
- Example grammatical categories:
 - Noun: case, number, gender...
 - Verb: mood, number, tense. . .
- Example grammemes:
 - языкам: dative, plural, masculine...
 - говорит: indicative, singular, present...

Grammemes in the Russian Language

- Grammatical categories can be of two types:
 - **Classifying** grammatical categories have single grammeme for all lexeme forms.
 - **Modifying** grammatical categories vary while changing lexeme forms.
- Examples:
 - classifying: noun gender, verb transitivity
 - modifying: noun case, adjective gender
- Modifying grammemes in Russian can be guessed by word's appearance.
- Not so rosy for classifying grammemes:
 - noun animacy: проектор/проректор, повестка/невестка
 - verb transitivity: иметь/сметь, ворошить/ворожить

Grammeme prediction as a supervised learning task:

- Given: labeled set $X^m = \{(x_i, y_i)\}_{i=1}^m$
 - lexemes $x_i \in X$
 - grammemes $y_i \in Y$ of a grammatical category
- Task: find $a: X \to Y$ minimizing error rate $\sum_{i=1}^{m} [a(x_i) \neq y_i]$

Focus on 2 binary classification tasks:

- noun animacy
- verb transitivity

Grammeme prediction as a supervised learning task:

- Given: labeled set $X^m = \{(x_i, y_i)\}_{i=1}^m$
 - lexemes $x_i \in X$
 - grammemes $y_i \in Y$ of a grammatical category
- Task: find $a: X \to Y$ minimizing error rate $\sum_{i=1}^{m} [a(x_i) \neq y_i]$

Focus on 2 binary classification tasks:

- noun animacy
- verb transitivity

Disclaimer: We use binary labels, although in fact they **are not** binary.

- homonymy & polysemy
- no "strictly transitive" words

Possible applications include:

- Automatic and semi-automatic morphological annotation
 - corpus annotation for languages lacking labeled data
 - prediction of morphological features for out-of-vocabulary words
- Intermediate feature generation for more complex tasks
 - syntactic parsing
 - text similarity estimation
 - relation extraction
 - machine translation etc.

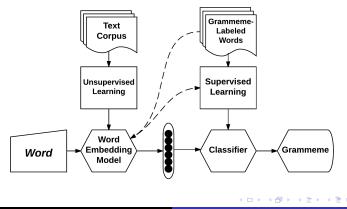
Related Work

1 Bowman et al. Automatic Animacy Classification (2012)

- Language: English
- Data: labeled noun phrases
- Features: syntactic functions and dependency types
- Accuracy: 93%
- Bloem et al. Automatic animacy classification for Dutch (2013)
 - Language: Dutch
 - Data: full syntactic dependency trees
 - Features: dependency frequency ratio
 - Accuracy: 92%
- Qiu et al. Investigating language universal and specific properties in word embeddings (2016)
 - Language: Arabic, Chinese, Hindi...
 - Data: text corpora labeled with POS tags
 - Features: word embeddings
 - Accuracy: 90%

Proposed Method Description

- Language: Russian
- Data: unlabeled text corpus
- Features: word embeddings trained on the corpus
 - word2vec
 - FastText



Implementation Details

- Data: 1.3M Wikipedia articles (100M tokens)
- Preprocessing:
 - split into sentences
 - lowercasing
 - removal of punctuation & non-Cyrillic letters
 - lemmatization
- Software:
 - pymorphy2 for lemmatization and grammeme labeling
 - gensim & fasttext for word embeddings
 - scikit-learn for classification

• skip-gram context/word likelihood:

$$p(w_c|w_t) = \frac{e^{s(w_t,w_c)}}{\sum_{j=1}^W e^{s(w_t,j)}}$$

- word2vec skip-gram similarity: $s(w_t, w_c) = \mathbf{u}_{w_t}^{\mathsf{T}} \mathbf{v}_{w_c}$
- \mathcal{G}_w N-gram set of w:
 - 3 ≤ *N* ≤ 6
 - $\mathcal{G}_{words} = \{wor, ord, rds, word, ords, words\}$
- FastText similarity: $s(w,c) = \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{\intercal} \mathbf{v}_c$
- FastText model can predict vectors for unseen words based on their N-gram vectors.

Experiments

Э

æ

Experiments: General Feasibility

Embedding model parameters:

- dimension: 250, 500
- context window: 0+3, 3+0, 2+2, 5+5
- word2vec & FastText skip-gram / CBOW
- FastText prediction for unseen words

ML algorithms:

• SVM (linear kernel), Random Forest, Multi-Layer Perceptron Metrics: weighted F1

	transitivity			animacy		
model	SVM	RF	MLP	SVM	RF	MLP
w2v, best param	0.833	0.748	0.831	0.888	0.870	0.873
ft, best param	0.859	0.834	0.868	0.848	0.820	0.830
ft, predict	0.840	0.825	0.862	0.797	0.789	0.811

うくつ

Experiments: Stacking w2v Matrices

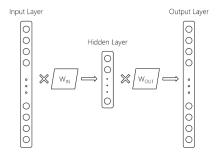


Рис. 1: Principle scheme of w2v architecture

	transitivity			animacy		
features	SVM	RF	MLP	SVM	RF	MLP
Win	0.833	0.748	0.831	0.888	0.870	0.873
Wout	0.848	0.755	0.844	0.886	0.871	0.865
$[W_{in}, W_{out}]$	0.852	0.841	0.862	0.893	0.876	0.883

Alexey Romanov

- FastText outperforms w2v when N-grams matter:
 - e.g., it can capture suffixes of transitive verbs
- Non-linear relations of embedding components can be useful.
 - MLP > SVM for transitivity
- FastText prediction works when N-grams matter
 - 50K seen nouns, 70K unseen nouns
 - 6K seen verbs, 6K unseen verbs
- Auxiliary w2v training information can be useful.
 - Both W_{in} and W_{out} matrices work.

Homonymy and polysemy

- изменить trans. "to change" or intrans. "to cuckold"
- везти trans. "to carry" or intrans. "to be lucky"
- барак "a barrack" and Барак "Barack"
- Rare words with few occurrences in the corpus
 - дефилировать "to sashay"
 - хлебопашец "a sodbuster"
- Transitive verbs used without a direct object
 - *петь* "to sing"
- Inanimate proper names that can be seen as human names
 - Бредфорд "Bradford"

- The method showed its feasibility for fast and accurate classification of unlabeled data.
- The results are comparable to previous work with more complex classification features.
- FastText enables prediction of grammemes for unseen data.
- Future planes include:
 - further investigation of word embedding models
 - applying pooling schemes on unlemmatized data
 - extension of the approach to various languages

Thanks for your attention

Alexey Romanov

alexey.romanov@phystech.edu

Alexey Romanov Dialogue