

Testing Features and Measures in Russian Paraphrasing Task

Natalia Loukachevitch (louk_nat@mail.ru),

Alexander Shevelev,

Valeria Mozharova

Lomonosov Moscow State University

Paraphrase detection

- A paraphrase is a restatement of the meaning of a text, passage or sentence using other words.
- Detection of paraphrases is important for
 - Information retrieval
 - Question answering
 - Text summarization
 - Document clustering
 - Plagiarism detection etc.
- Most research for English
- Other languages including Russian:
 - Much less research

Features proposed in previous work

- various measures of word and character similarities
 - length features, longest common sequence, n-gram overlap features, edit distances, machine translation similarities (BLUE, WER, TER, ROUGE-L etc.), information-retrieval measures (tf-idf, BM25), named entity similarity (Brychcin, Svoboda 2016);
- features of lexical differences between sentences
 - including parts of speech tags, named entities, meaningful words (Pronoza, Yagunova, 2015a);
- syntactic features based on similarity between dependency trees;
- semantic measures
 - based on WordNet conceptual structure (Mihalcea et al. 2006; Fernando, Stevenson, 2008);
- corpus-based similarities
 - using classical distributional vectors or distributed representations of words learned by neural networks on a large text corpus (Przybyla et al., 2016);
- last approaches (SemEval-2016):
 - combine neural networks, comparison of dependency trees and semantic measures based on WordNet similarity (Rychalska et al., 2016; Brychcin, Svoboda 2016).

Shared Task on Russian Paraphrase Detection (Pivovarova et al., 2016)

- Precise, loose and non-paraphrases
 - Sentences were extracted from news headlines
- Classifications tasks:
 - Binary (paraphrases vs. non-paraphrases) and threeclass
- Collections
 - Train collection: about 7000 pairs
 - Test collection: 1924 pairs
- Type of runs
 - Standard: train data and manual resources
 - Non-standard: all types of resources

Examples from the Dataset

Precise Paraphrase

- У Деми Мур украли одежду. (Demi Moor's clothes were stolen)
- У Деми Мур похитили одежду. (Demi Moor's clothes were robbed)

Loose Paraphrase

- Названа причина смерти Уго Чавеса (The cause of Hugo Chavez's death is named).
- Причиной смерти Чавеса назвали инфаркт (The cause of Chavez's death was a heart attack.)

This Work: Features for Paraphrase Detection in Russian

- Semantic Similarity Features
 - Based on published version of RuThes thesaurus
 - http://www.labinform.ru/pub/ruthes/index.htm
- Combination of thesarus features with other features:
 - String-based Features
 - Information-retrieval features
 - Part-of-Speech Features

RuThes Linguistic Ontology

- Unified representation single net of concepts
 - In WordNet there are nets of synsets divided into parts of speech
- Text entries of the same concept can include
 - Different parts of speech
 - (cf. WordNet: synsets contain only the same POS words)
 - Lexical units and domain terms
 - Words and multiword expressions
- RuThes-lite published version
 - 115 thousand words and expressions

RuThes Relations

- Small set of relations
 - Class subclass
 - Transitivity, inheritance
 - Part-whole
 - Transitivity of part-whole relations
 - External ontological dependence (Gangemi et al., 2001; Guarino, 2009)
 - Existence of Car plant depends on existence of car
 - Inherited to sublasses and parts
- Semantic similarity is usually calculated using the thesaurus paths
 - In RuThes paths are defined on the basis of relations' properties

Текстовый вход: САД

ДЕТСКИЙ САД

(ДЕТСАД, ДЕТСАДИК, ДЕТСАДОВСКИЙ, ДЕТСКИЙ САД, САД, САДИК, САДОВСКИЙ, САД-ЯСЛИ, ЯСЛИ-САД)

выше дошкольное учреждение

ЧАСТЬ ЯСЛИ

САД (УЧАСТОК ЗЕМЛИ)

(САД, САДИК, САДОВЫЙ)

ВЫШЕ ЗЕМЕЛЬНЫЙ УЧАСТОК

АССОЦ₁ <u>САДОВАЯ КУЛЬТУРА</u>

АССОЦ, БЕСЕДКА

АССОЦ, САДОВНИК

 $ACCOЦ_2$ <u>САДОВОДСТВО</u>

RuThes Fragment

Thesaurus-based Semantic Similarity Measures

- Well-known for WordNet
- We study:
 - Semantic measures for RuThes
 - Measures based on different types of concept paths
 - Only hypernyms
 - Hypernyms and wholes
 - All relations
 - Paths without length restriction vs. with additional restriction on the path length

Thesaurus Features: Leacock-Chodorow measure and its linear variant

$$sim_{lch} = -\log_{2D} \frac{N_p}{2D} = 1 - \log_{2D} N_p$$

- where Np is the distance between nodes
- D is the maximum depth in the taxonomy
- the distance between synonyms is equal 1

$$sim_{path} = 1 - \frac{N_p}{2D}$$

Information Content (IC)

- IC (concept)=-log(p(concept)) (Resnik, 1995)
- Counting IC
 - Term frequency + Inherited frequency
 - Inherited frequency=frequency of lower level concepts
- Low frequency concepts are often more specific than high frequent ones
 - IC large positive value,
 - The more frequency of a concept is, the less IC is.
- We used news corpus, more then 1 million news articles

Information Content (Pedersen, 2013) inherited frequency (if)

tf=20

tf=10

tf=25

tf=16,000

tf=10,000

tf=3,000

tf=8,000

tf=6,000

Measures based on information content

Lin measure

$$sim_{lin} = \frac{2 \cdot IC(LCS(C_1, C_2))}{IC(C_1) + IC(C_2)}$$

Jcn measure

$$sim_{jcn} = \frac{1}{IC(C_1) + IC(C_2) - 2 \cdot IC(LCS(C_1, C_2))}$$

- LCS least commom subsumer
- The smallest path is considered (for ambiguous words)

Calculating similarity measure between sentences

 Similarity matrix is calcualted between words of two sentences Fernando, Stevenson, 2008)

$$sim (\vec{a}, \vec{b}) = \frac{\vec{a}W\vec{b}}{|\vec{a}||\vec{b}|}$$

- If a word in the fist sentence is similar to several words in other sentences, this similarities are summed up
- In our work: word similarity not more than 1
- One-feature classifier (linear SVM) was trained
- It allows finging optimal thresholds between classes

Example of similarity matrix (Lch measure)

- (s1) У Деми Мур украли одежду. (Demi Moor's clothes were stolen)
- (s2) У Деми Мур похитили одежду. (Demi Moor's clothes were robbed)

	Деми (Demi)	Myp (Moor)	Украсть (steal)	Похитить (rob)	Одежда (Clothes)
Деми (Demi)	1	0	0	0	0
Myp (Moor)	0	1	0	0	0
Украсть (steal)	0	0	1	0.7941	0
Похитить (rob)	0	0	0.7941	1	0
Одежда (Clothes)	0	0	0	0	1

Finding the Best Thesaurus Feature (F-measure)

Feat.	Relations	2-class Best Results/Full	3-class Best Results/Full
Lch	Only Hypernyms Hypernyms and Wholes All relations	78.4 (6)/ 78.8 (5) 78.9 (5)	54.1 (3) 54.5 (5) 54.9 (5)
Path	Only Hypernyms Hypernyms and Wholes All relations	78.4 (3) 78.8 (4) 78.8 (5)	54.2 (5) 54.3 (4) 54.2 (2)
Lin	Only Hypernyms Hypernyms and Wholes All Relations	79.5 (2)/ 74.7 79.4 (2)/ 74.9 79.9 (2)/ 75.0	54.5 (2)/35.8 55.5 (2)/34.5 55.1 (2)/34.6
Jcn	Only Hypernyms Hypernyms and Wholes All relations	79.6 (3)/ 79.09 79.5 (2)/ 78.7 79.6 (2)/ 78.7	56.2 (2)/ 55.4 56.0 (3)/ 54.0 56.4 (3)/ 54.2

Combining with Other Features

- String Features in form of intersections
 - 2- and 3-symbol Ngrams, 1-3 word Ngrams

$$feature_1 = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} \qquad feature_2 = \frac{|S_1 \cap S_2|}{|S_1|} \qquad feature_3 = \frac{|S_1 \cap S_2|}{|S_2|}$$

- Information-Retrieval features
 - BM25
 - Idf of words in difference set between sentences
- POS features of words in difference set between sentences

Results of machine learning (Random Forest classifier, grid parameter tuning)

Feature Set	2-class task Acc/F1	3-class task Acc/F1
Best single thesaurus feature	- / 79.9	- /56.4
1) String-based combination	73.80/79.00	60.03/57.90
2) 1)+BM-25	74.06/79.18	60.96/58.99
3) 2)+5-POS Features	74.42/79.32	61.07/59.03
3)+Best Thesaurus= 2 from lch (only hyper, hyper+whole)	77.33/81.71	62.57/60.93
Best res. of Shared Task Standard Non-Standard	74.59/80.14 77.39/81.10	59.01/56.92 61.81/58.38

Experiments with other machine learning methods (three class task): scikit-learn

Method	Default values	Grid tuning
Linear SVM	61.43/ 58.1	61.64/58.52
SVM with rbf kernel	60.49/57.62	59.61/57.32
Random forest	56.65/54.6	62.57/60.93
Gradient boosting	60.86/ 59.11	61.93/59.92

Conclusion

- We studies Ruthes similarity measures for Russian paraphrase task
- Semantic features
 - Proposed for WordNet
 - Use of all relations are usually slightly better than to utilize only hypernyms relations
 - Restriction of length path improves the measures significantly
 - The best thesaurus features as addition to other features were two features lcg (without accounting IC)
- The best method: random forest
 - scikit-learn with grid tuning