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Prior knowledge
I Since Ferdinand de Saussure, we know that the linguistic sign is

arbitrary:
I any meaning can be conveyed by any sequence of sounds or

characters;
I form and semantics are not related.
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Introduction

But...

I There are exceptions from this law:
I Onomatopoeia (imitating the sound with the word form);

I ‘мяукать’
I Phonaesthemes (parts of words with consistently linked form and

meaning):
I ‘gl-’ related to vision and light in English [Bergen, 2004];
I ‘-стр-’ related to quickness or streaming in Russian [Mikhalev, 2008];
I etc...

Can we quantify this systematic iconicity in the language as a whole?
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Introduction

Quantifying form and meaning
I ‘Surface’ and ‘semantic’ differences between word pairs;

I if these differences are correlated, it would mean that the form to
some extent does predict the meaning (or vice versa);

I the strength of this correlation shows how systematic is the
vocabulary we deal with;

I surface differences: Levenshtein edit distances;
I semantic differences: cosine distances between word vectors in the

word embedding models.

Findings for Russian
I We analyzed the link between the graphic forms and meanings of

frequent monosyllabic Russian nouns;
I There is a strongly statistically significant systematicity in this data;
I The correlation is even higher than the one reported in similar

experiments for English.
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Introduction

Some previous work
I The form space and meaning in English were shown to be related in

[Monaghan et al., 2014];

I indeed, there are regions in the lexicon, where the arbitrariness
principle is violated;

I [Gutierrez et al., 2016] further proved this with modern word
embedding models and kernel regresssion (best paper award at
ACL-2016);

I [Blasi et al., 2016] showed that there are strong cross-linguistic
sound-meaning associations.

What about Russian?
I The problem was studied in [Zhuravlev, 1991] and other works of

the same author;
I the results were unstable, hardly verifiable and generally disputable.

Now we can quantify it properly.
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Experimental setting

Data sources
4 test sets were produced from the Russian National Corpus (RNC):

1. Mono: all monosyllabic nouns with frequency > 100 (1 729 words);
2. Bi: monosyllabic and bisyllabic words with frequency > 1000 (2 900

words);
3. Bi_NoDim: the same as Bi, w/o the nouns ending with the

diminutive suffixes ‘-ок’, ‘-ек’ and ‘-ка; (2 633 words);
4. All: all nouns with frequency > 1000 (6 715 words).

Excluded:
I nouns less than 3 characters;
I nouns with non-Cyrillic characters and digits;
I proper names and toponyms (as detected by Mystem).
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Experimental setting

Distributional model
I For orthographic differences, the edit distance is enough;

I for semantic differences, we need a distributional semantic model.

Continuous Skipgram model [Mikolov et al., 2013] was trained on the
lemmatized and PoS-tagged RNC:
I vector size 300;
I symmetric context window 10;
I other hyperparameters set as default.
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Experimental setting

Intrinsic evaluation of the model:
I Russian part of Multilingual SimLex999

[Leviant and Reichart, 2015]: 0.36;

I Russian translation of Google Analogies dataset
[Mikolov et al., 2013]: 0.65.

These results are comparable to state-of-the-art for English and
Russian.
Thus, the model is good enough to build further experiments upon it.
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Measuring correlation

Workflow
1. calculate pairwise orthographic and semantic distances between

words;

I semantic distance: 1 − CosSim, where CosSim is the cosine
similarity between word embeddings;

I CosSim = 0 if CosSim < 0 (the distance is always within [0...1])
I for n words, the number of pairs is n × (n − 1)/2:

I Mono: 1 493 856 distances
I Bi_NoDim: 3.5 million distances
I Bi: 4 million distances
I All: 22.5 million distances

2. for each dataset, produce 2 sets of distances (edit and cosine);
I Edit(квас, пас)= 2
I Cosine(квас, пас)= 0.89

3. calculate Spearman rank correlation (ρ) between these 2 sets;
4. pairs similar in form tend to be more similar in meaning?
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Measuring correlation
NB: the distances are skewed to the right and not normally distributed:

Distribution of pairwise cosine distances in the All dataset 11



Measuring correlation

Testing significance

I pairwise distances are not independent: changing one character in
a word will change several distances, not one;

I Spearman correlation must be additionally tested for significance;
I we use Mantel permutation test [Mantel, 1967].

I Mantel test randomly shuffles the values in one of the two sets;
I does it x times;
I x correlation values are computed for x ‘possible lexicons’.
I How many random lexicons produced higher correlation than the

real one?
I If the real data does contain systematicity, the random lexicons will

very rarely exhibit the same.
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Results

Our results: Mantel test with 1 000 random permutations

Dataset Spearman correlation Mantel test upper-tail p-value

Mono 0.0310 0.001
Bi_NoDim 0.0519 0.001

Bi 0.0586 0.001
All 0.0800 0.001
Correlations between edit distances and semantic distances

I p = 0.001 means that none of the 1 000 random lexicons exhibited
correlation more or equal to the real one.

I The correlations are extremely significant (though low).
I The Mono correlation is twice higher than 0.016 reported in

[Monaghan et al., 2014] for the set of English mono-morphemic
words.
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Localizing systematicity

I Why this highly significant correlation is so low?

I Can it be ‘localized’ in some parts of the lexicon?

We split the Mono dataset into subsets corresponding to the initial
two-character sequences (arguably, phonaesthemes):
I nouns starting with ‘ст-’,
I nouns starting with ‘ха-’
I etc...
I this gave us 321 subsets.

Filtered out:
I 159 subsets containing less than 3 nouns;
I 18 subsets with no variance in pairwise edit distances (for example,

all distances equal to 1).
144 ‘valid subsets’ in the end: calculated correlations separately for
each of them.
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Localizing systematicity
Grouping by initial characters reveals local areas of high systematicity:

Correlations distribution in the subsets of the Mono dataset
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Localizing systematicity

Direction of correlation
I In many cases, the correlation ρ was high, but not statistically

significant;

I For example, ‘тв-’ subset (‘тварь’, ‘твердь’, ‘твист’): ρ = 1, p = 0.17.
I This is especially true for negative correlations (difficult to interpret

anyway).

Can we prove this is not a simple fluctuation?
I Comparison with randomly generated subsets of comparable sizes:

I random subsets follow normal distribution of correlations, concentrate
around zero, no outliers;

I the initial phonaesthemes based subsets break the normal
distribution, introducing strong skew towards high values;

I connection between the form and the meaning is at least partly
conditioned by the initial characters.
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Localizing systematicity

Correlations distribution in the subsets of the Mono dataset
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Localizing systematicity

Top subsets by the correlation ρ (p < 0.05):

Initial ρ p Subset size Examples

ха- 0.57 0.011 9 хай, хам, харч, хадж...
дж- 0.43 0.047 7 джей, джим, джин...
ше- 0.39 0.015 9 шелк, шерсть, шейх, шельф...
фо- 0.35 0.019 9 фон, фонд, фок, форс...
ва- 0.33 0.017 10 вал, вальс, вар, вамп...
ло- 0.32 0.011 13 лов, лоб, лог, лорд, лось...
ле- 0.27 0.012 14 лесть, лещ, лед, лев...
ка- 0.26 0.029 16 кайф, казнь, кадр, кант, кат...
ку- 0.25 0.012 17 куб, культ, курд, кус, куст...

гл- 0.37 0.055 8 глубь, глушь, гладь, глаз...
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Discussion

What does that mean?
I the principle of the arbitrariness of linguistic sign in general still

holds;

I however, there are regular exceptions, manifested throughout the
lexicon;

I most of the correlations can probably be explained with rigorous
diachronic research:

I words in the pairs can be cognates, etc..
I still, these ‘pockets of sound symbolism’ [Gutierrez et al., 2016]

deserve a deeper analysis.
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Discussion

Instead of conclusion
I Graphic form and semantics of Russian nouns do correlate in the

present state of language.

I ρ = 0.03, as calculated on a set of 1 729 mono-syllabic nouns.
I This is higher than the reported value for English (0.016).
I In some local lexical subsets, this correlation is even stronger, up to

0.3 and even 0.57 (statistically significant).

The datasets and calculated pairwise distances:
http://ltr.uio.no/~andreku/arbitrariness/
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