Part-of-speech Tagging with Rich Language Description

Daniil Anastasyev, Andrew Andrianov, Eugene Indenbom ABBYY, Moscow

Dialogue 23rd International Conference on Computational Linguistics Moscow, RSUH, 1st June, 2017

《曰》 《聞》 《臣》 《臣》 三臣

Outline

- 2 Method description
 - Morphological model
 - Features
 - Target classes
 - Neural network
- B Evaluation
 - Train data
 - Evaluation results
 - Example of work
 - Errors analysis

Summary

(日) (周) (日) (日)

Problem overview Method description Evaluation Summary

• The morphological analysis is key step in many NLP pipelines.

イロト イヨト イヨト イヨト

æ

- The morphological analysis is key step in many NLP pipelines.
- The results of morphological analysis are used in syntactic and semantic parsing in ABBYY Compreno.

- The morphological analysis is key step in many NLP pipelines.
- The results of morphological analysis are used in syntactic and semantic parsing in ABBYY Compreno.
- Accurate morphological analyser can highly increase speed of the syntactic parsing by reducing the number of obtained hypotheses.

Problem overview Morphological model Method description Evaluation Target classes Summary Neural network

Broad outline

The main features of our model:

- Vast morphological description.
 - Aims to reduce the set of possible grammatical values.

イロト イヨト イヨト イヨト

Problem overview Morphological model Method description Features Evaluation Target classes Summary Neural network

Broad outline

The main features of our model:

- Vast morphological description.
 - Aims to reduce the set of possible grammatical values.
- **2** LSTM neural network.
 - Aims to construct the best grammatical values.

Problem overview Method description Evaluation Summary Morphological model Features Target classes Neural network

Russian morphological description

• Words are combined into paradigms.

Russian morphological description

- Words are combined into paradigms.
- Each paradigm provides information about grammatical value.

Possible grammatical values of the word «мыла»

- **9** мыть **Par1** VERB Tense=Past Number=Sing Gender=Fem Voice=Act VerbForm=Fin Mood=Ind (freq=2.03 · 10⁻⁷)
- **2** *мыло* **Par2** NOUN Animacy=Inan Case=Gen Gender=Neut Number=Sing (freq= $7.57 \cdot 10^{-7}$)
- 3 мыло Par2 NOUN Animacy=Inan Case=Nom Gender=Neut Number=Plur (freq=3.81 · 10⁻⁷)
- **MELLO Par2** NOUN Animacy=Inan Case=Acc Gender=Neut Number=Plur $(freq=3.48 \cdot 10^{-7})$

(D) (A) (A)

Russian morphological description

- Words are combined into paradigms.
- Each paradigm provides information about grammatical value.
- The provided analysis is ambiguous.

Possible grammatical values of the word «мыла»

- 9 мыть Par1 VERB Tense=Past Number=Sing Gender=Fem Voice=Act VerbForm=Fin Mood=Ind (freq=2.03 · 10⁻⁷)
- **2** *мыло* **Par2** NOUN Animacy=Inan Case=Gen Gender=Neut Number=Sing (freq= $7.57 \cdot 10^{-7}$)
- 3 мыло **Par2** NOUN Animacy=Inan Case=Nom Gender=Neut Number=Plur (freq= $3.81 \cdot 10^{-7}$)
- **MULLO Par2** NOUN Animacy=Inan Case=Acc Gender=Neut Number=Plur $(freq=3.48 \cdot 10^{-7})$

(D) (A) (A)

Russian morphological description

- Words are combined into paradigms.
- Each paradigm provides information about grammatical value.
- The provided analysis is ambiguous.
- The description's tagset is taken from ABBYY Compreno.
 - It differs considerably from Universal Dependencies.

Possible grammatical values of the word «мыла»

- 9 мыть Par1 VERB Tense=Past Number=Sing Gender=Fem Voice=Act VerbForm=Fin Mood=Ind (freq=2.03 · 10⁻⁷)
- 2 мыло **Par2** NOUN Animacy=Inan Case=Gen Gender=Neut Number=Sing (freq=7.57 \cdot 10⁻⁷)
- 0 мыло Par2 NOUN Animacy=Inan Case=Nom Gender=Neut Number=Plur (freq=3.81 \cdot 10 $^{-7})$
- мыло Par2 NOUN Animacy=Inan Case=Acc Gender=Neut Number=Plur (freq=3.48 · 10⁻⁷)

・ロト ・部ト ・ヨト

Problem overview Method description Evaluation Summary Morphological model Features Target classes Neural network

Unknown words processing

• Texts usually contains large number of out-of-vocabulary words: rare words («Анастасьев»), neologisms («заддосить»), misspellings («мыпа»).

- Texts usually contains large number of out-of-vocabulary words: rare words («Анастасьев»), neologisms («заддосить»), misspellings («мыпа»).
- The analysis of unknown words is performed as follows:
 - Possible endings are determined:
 - заддосить (empty, like «резюме»)
 - заддосить (like «февраль»)
 - заддосить (like «закосить»)

- Texts usually contains large number of out-of-vocabulary words: rare words («Анастасьев»), neologisms («заддосить»), misspellings («мыпа»).
- The analysis of unknown words is performed as follows:
 - Possible endings are determined:
 - заддосить (empty, like «резюме»)
 - заддосить (like «февраль»)
 - заддосить (like «закосить»)

2 Paradigms occurred with such endings are collected.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Texts usually contains large number of out-of-vocabulary words: rare words («Анастасьев»), neologisms («заддосить»), misspellings («мыпа»).
- The analysis of unknown words is performed as follows:
 - Possible endings are determined:
 - заддосить (empty, like «резюме»)
 - заддосить (like «февраль»)
 - заддосить (like «закосить»)
 - 2 Paradigms occurred with such endings are collected.
 - Obtained analyses are sorted by statistics of suffixes of known words in the paradigms.
 - Unknown word has suffix similar to some suffix of known word \rightarrow it's likely that they share same paradigm.
 - E.g., «ддосить» and «гундосить».
 - $Q(form) = \mathbf{P}(paradigm(form), suffix(form)).$

・ロット (日本) (日本)

- Texts usually contains large number of out-of-vocabulary words: rare words («Анастасьев»), neologisms («заддосить»), misspellings («мыпа»).
- The analysis of unknown words is performed as follows:
 - Possible endings are determined:
 - заддосить (empty, like «резюме»)
 - заддосить (like «февраль»)
 - заддосить (like «закосить»)
 - 2 Paradigms occurred with such endings are collected.
 - Obtained analyses are sorted by statistics of suffixes of known words in the paradigms.
 - Unknown word has suffix similar to some suffix of known word \rightarrow it's likely that they share same paradigm.
 - E.g., «ддосить» and «гундосить».
 - $\bullet \ Q(form) = \mathbf{P}(paradigm(form), suffix(form)).$
- The found score is treated in the same way as probability of known word.

・ロト ・日ト ・日ト ・日ト

Have to take into account context of the analysed word:

- **9** Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word

イロト イヨト イヨト イヨト

Have to take into account context of the analysed word:

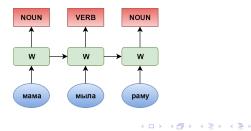
- **•** Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word
 - Linear classifiers (Logistic regression or Linear SVM) or gradient boosting performs good.

Have to take into account context of the analysed word:

- Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word
 - Linear classifiers (Logistic regression or Linear SVM) or gradient boosting performs good.
 - Sometimes such context is not sufficient.

Have to take into account context of the analysed word:

- Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word
 - Linear classifiers (Logistic regression or Linear SVM) or gradient boosting performs good.
 - Sometimes such context is not sufficient.
- **2** Usage of recurrent neural networks.



Have to take into account context of the analysed word:

- **•** Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word
 - Linear classifiers (Logistic regression or Linear SVM) or gradient boosting performs good.
 - Sometimes such context is not sufficient.
- **2** Usage of recurrent neural networks.
 - Words are fed one by one.

Have to take into account context of the analysed word:

- Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word
 - Linear classifiers (Logistic regression or Linear SVM) or gradient boosting performs good.
 - Sometimes such context is not sufficient.
- **2** Usage of recurrent neural networks.
 - Words are fed one by one.
 - Bidirectional recurrent layer gives information from both left and right contexts.

Have to take into account context of the analysed word:

- **•** Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word
 - Linear classifiers (Logistic regression or Linear SVM) or gradient boosting performs good.
 - Sometimes such context is not sufficient.
- **2** Usage of recurrent neural networks.
 - Words are fed one by one.
 - Bidirectional recurrent layer gives information from both left and right contexts.
 - Usually LSTM or GRU are used.

Have to take into account context of the analysed word:

- **•** Usage of context features.
 - Features from 2-3 words in left and right contexts of the analysed word
 - Linear classifiers (Logistic regression or Linear SVM) or gradient boosting performs good.
 - Sometimes such context is not sufficient.
- **2** Usage of recurrent neural networks.
 - Words are fed one by one.
 - Bidirectional recurrent layer gives information from both left and right contexts.
 - Usually LSTM or GRU are used.
 - Can handle longer dependencies.

・ロット (日本) (日本)

Problem overview Morphological model Method description Features Evaluation Target classes Summary Neural network

Used features

• Grammatical value.

Feature description

- Probabilities of each possible grammeme by dictionary.
- Мыла:
 - Freq of Genitive form $-7.57 \cdot 10^{-7}$.
 - Freq of Nominative form $-3.81 \cdot 10^{-7}$.
 - Freq of Accusative form $-3.48 \cdot 10^{-7}$.

•
$$\mathbf{P}(\text{Case}=\text{Acc}) = \frac{3.48 \cdot 10^{-7}}{(7.57 + 3.81 + 3.48) \cdot 10^{-7}} \approx 0.234.$$

Problem overview Morphological m Method description Features Evaluation Target classes Summary Neural network

Used features

- Grammatical value.
- Ambiguity classes' probabilities.

Feature description

• Probabilities of each possible grammatical values.

Used features

- Grammatical value.
- Ambiguity classes' probabilities.
- Punctuation.

Feature description

- Presence of particular punctuation mark at the left or right.
- Binary feature.

Used features

- Grammatical value.
- Ambiguity classes' probabilities.
- Punctuation.
- Word's case type.

Feature description

- Proper, lower, UPPER or FiXed capitalisation.
- Binary feature.

Problem overview Morphological m Method description Features Evaluation Target classes Summary Neural network

ARRVV

- Grammatical value.
- Ambiguity classes' probabilities.
- Punctuation.
- Word's case type.
- Suffixes.

Feature description

- Last 1-3 letters of the word:
 - -ыла, -ла, -а.
- Used separate embedding layer for each suffix length.

Used features

- Grammatical value.
- Ambiguity classes' probabilities.
- Punctuation.
- Word's case type.
- Suffixes.
- Word embeddings.

Feature description

Can be initialised:

- Uniformly, for the first ≤ 20000 most frequent words.
- By pretrained embeddings.
 - Led to larger model and did not give any significant improvement.

(日) (四) (日) (日) (日)

Two ways to design the classification task:

- **0** Multiclass classification between all possible grammatical values.
 - E.g., «NOUN Animacy=Inan Case=Nom Gender=Neut Number=Sing» refers to one of the classes.

Two ways to design the classification task:

- **9** Multiclass classification between all possible grammatical values.
 - E.g., «NOUN Animacy=Inan Case=Nom Gender=Neut Number=Sing» refers to one of the classes.
 - Leads to large number of classes.

Two ways to design the classification task:

- **9** Multiclass classification between all possible grammatical values.
 - E.g., «NOUN Animacy=Inan Case=Nom Gender=Neut Number=Sing» refers to one of the classes.
 - Leads to large number of classes.
 - Some classes are underrepresented in the train set.

Two ways to design the classification task:

- **9** Multiclass classification between all possible grammatical values.
 - E.g., «NOUN Animacy=Inan Case=Nom Gender=Neut Number=Sing» refers to one of the classes.
 - Leads to large number of classes.
 - Some classes are underrepresented in the train set.
- **2** Multiclass classification inside all of the grammatical categories.
 - E.g., classification between three possible values of category «Number»: Singular, Plural, Not defined.

Two ways to design the classification task:

- **9** Multiclass classification between all possible grammatical values.
 - E.g., «NOUN Animacy=Inan Case=Nom Gender=Neut Number=Sing» refers to one of the classes.
 - Leads to large number of classes.
 - Some classes are underrepresented in the train set.
- **2** Multiclass classification inside all of the grammatical categories.
 - E.g., classification between three possible values of category «Number»: Singular, Plural, Not defined.
 - Leads to fewer number of classes.

Two ways to design the classification task:

- **9** Multiclass classification between all possible grammatical values.
 - E.g., «NOUN Animacy=Inan Case=Nom Gender=Neut Number=Sing» refers to one of the classes.
 - Leads to large number of classes.
 - Some classes are underrepresented in the train set.
- **2** Multiclass classification inside all of the grammatical categories.
 - E.g., classification between three possible values of category «Number»: Singular, Plural, Not defined.
 - Leads to fewer number of classes.
 - Did not enhance quality of the model.

(日) (四) (日) (日) (日)

Problem overview M Method description F Evaluation 7 Summary M

Morphological model Features Target classes Neural network

Proposed neural network architecture

• Input layers:

Daniil Anastasyev POS Tagging with Rich Language Description

Problem overview Mor Method description Feat Evaluation Targ Summary Neur

Proposed neural network architecture

- Input layers:
 - Grammatical value representation with punctuation and orthographic features.

Problem overview M Method description F Evaluation T Summary N

Proposed neural network architecture

- Input layers:
 - Grammatical value representation with punctuation and orthographic features.
 - Word embeddings input.

Problem overview Method description Evaluation Summary

Morphological model Features Target classes Neural network

Proposed neural network architecture

- Input layers:
 - Grammatical value representation with punctuation and orthographic features.
 - Word embeddings input.
 - Suffixes embeddings inputs.

Proposed neural network architecture

- Input layers:
 - Grammatical value representation with punctuation and orthographic features.
 - Word embeddings input.
 - Suffixes embeddings inputs.
- One or two Bidirectional LSTM layers.

Proposed neural network architecture

- Input layers:
 - Grammatical value representation with punctuation and orthographic features.
 - Word embeddings input.
 - Suffixes embeddings inputs.
- One or two Bidirectional LSTM layers.
- Dense layer with Dropout and ReLU activation.

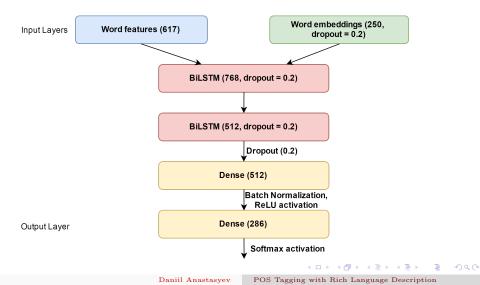
Proposed neural network architecture

- Input layers:
 - Grammatical value representation with punctuation and orthographic features.
 - Word embeddings input.
 - Suffixes embeddings inputs.
- One or two Bidirectional LSTM layers.
- Dense layer with Dropout and ReLU activation.
- Dense output layer with Softmax activation.

(日) (四) (日) (日) (日)

Problem overview Morphological mode Method description Features Evaluation Target classes Summary Neural network

Structure of the neural network



Problem overview Method description **Evaluation** Summary Train data Evaluation results Example of work Errors analysis

Train data

- GICR subcorpus.
 - Contains about 1 million words.
 - Uses Universal Dependencies tagset and conventions that correspond to test set.
- Wikipedia subcorpus.
 - Contains more than 3 million words.
 - Uses Compreno tagset.
- Corpus of novels.
 - Contains about 30 million words.
 - Uses Compreno tagset.

Train data Evaluation results Example of work Errors analysis

Tagsets conversion

- The annotation format of Wikipedia and Novels corpora was automatically converted.
- The achieved annotation had number of differences from the competition format.
- This differences were smoothed out by proper training of the neural network.

Train data Evaluation results Example of work Errors analysis

Fine tuning of the model

- Model gains from usage of large corpus on pretrain stage.
- Model requires training on corpus with more appropriate annotation.

Train corpus	Accuracy on validation set
GICR	96.41%
Novels	95.36%
Pretrained on Novels, Trained on GICR	97.78%

Performance of the model on validation set

Evaluation results

- Model achieved following results on the test set.
- The last model was pretrained on Novels corpus, others were trained on GICR subcorpus only.

Results with different parameters

Model	Fiction	News	Social media
1BiLSTM(768) + 0.2 Dropout	94.95% /	97.01% /	94.30% /
	69.54%	75.70%	71.30%
1BiLSTM(768)	95.35% /	97.20% /	94.66% /
+ Dense(768) + 0.2 Dropout	71.83%	76.82%	73.94%
1BiLSTM(768) + 2BiLSTM(512)	95.57% /	97.37% /	95.13% /
+ Dense(768) + 0.2 Dropout	73.10%	78.77%	74.47%
1BiLSTM(768) + 2BiLSTM(512)	95.30% /	97.54% /	95.15% /
+ Dense(768) + 0.5 Dropout	73.35%	79.89%	75.00%
Third model pretrained	97.45% /	97.37% /	96.52% /
on large corpus (final results)	81.98%	87.71%	81.34%

Example of work on out-of-vocabulary words

• Analysis of sentence that fully consists of unknown words.

Глокая глокий ADJ Case=Nom Gender=Fem Number=Sing Degree=Pos	куздра куздра NOUN Case=Nom Gender=Fem Number=Sing	штеко ADV Degree=Pos	будланула <i>будлануть</i> VERB Gender=Fem Number=Sing Tense=Past Voice=Act	бокра бокра NOUN Case=Nom Gender=Fem Number=Sing
Глокая глокать VERB Voice=Act Tense=Notpast VerbForm=Conv	, куздра куздра NOUN Case=Nom Gender=Fem Number=Sing	штеко ADV Degree=Pos	будланула будлануть VERB Gender=Fem Number=Sing Tense=Past Voice=Act	бокра бокра NOUN Case=Nom Gender=Fem Number=Sing

Errors summary

- Ambiguity between nominative and accusative cases $\sim 30\%$ of all mistakes.
- Ambiguity in the numbers of nouns $\sim 11\%$ of all mistakes.

The most common mistakes

Correct tag	Number of	Predicted tag	Number of
	occurrences	I realized tag	errors
Nominative	2650	Accusative	60
Accusative	1644	Nominative	37
Plural	2777	Singular	28
Nominative	2650	Genitive	19
DET	656	PRON	14
PRON	1133	DER	11

Train data Evaluation results Example of work Errors analysis

Examples of errors

• Some errors in identification of nominative and accusative cases and numbers of noun.

Минуту спустя	кровать кровать NOUN Case=Acc Gender=Fem Number=Sing	его принималась скрипеть
	Минуты минута NOUN Case=Gen Gender=Fem Number=Sing	, проведенные дедом

イロト イヨト イヨト イヨト

Problem overview Method description **Evaluation** Summary Train data Evaluation results Example of work Errors analysis

Examples of errors

• Some errors in test data annotation.

эти слова в ласку и	нежность	, их жестокости не скроешь
	нежность	
	NOUN	
	Animacy=Inan	
	Case=Nom	
	Gender=Fem	
	Number = Sing	
при некоторых видах	плетения	когда вращение купола
при некоторых видах	плетения плетение	когда вращение купола
при некоторых видах		когда вращение купола
при некоторых видах	плетение	когда вращение купола
при некоторых видах	плетение NOUN	когда вращение купола
при некоторых видах	плетение NOUN Animacy=Inan	когда вращение купола
при некоторых видах	плетение NOUN Animacy=Inan Case=Nom	когда вращение купола

イロト イヨト イヨト イヨト

• The proposed model shows fine accuracy.

イロト イヨト イヨト イヨト

æ

- The proposed model shows fine accuracy.
- It gains from:

イロト イヨト イヨト イヨト

æ

- The proposed model shows fine accuracy.
- It gains from:
 - Comprehensive language description.

イロト イヨト イヨト イヨト

- The proposed model shows fine accuracy.
- It gains from:
 - Comprehensive language description.
 - 2 Analysis of unknown words.

イロト イヨト イヨト イヨト

- The proposed model shows fine accuracy.
- It gains from:
 - Comprehensive language description.
 - 2 Analysis of unknown words.
 - Usage of LSTM neural network.

イロト イヨト イヨト イヨト

- The proposed model shows fine accuracy.
- It gains from:
 - Comprehensive language description.
 - 2 Analysis of unknown words.
 - Usage of LSTM neural network.
 - Pretraining on large corpus.