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The Problem of Content

• We have (somewhat) robust wide coverage parsers that work on the scale of
Bn of words (e.g. Clark and Curran 2004; Lewis and Steedman 2014a). They
can read the web (and build logical forms) thousands of times faster than we
can ourselves.

• So why can’t we ask them questions like “What are recordings by Miles Davis
without Fender Rhodes piano”, and get a helpful answer?

• The central problem of QA is that there are too many ways of asking and
answering questions, and we have no idea of the semantics that relates them.
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Too Many Ways of Answering The Question

• Your Question: Did Google buy YouTube?

• The Text:

1. Google purchased YouTube.
2. Google’s purchase of YouTube
3. Google acquired every company.
4. YouTube may be sold to Google.
5. Google will buy YouTube or Microsoft.
6. Google didn’t take over YouTube.
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The Problem

• The hard problem in semantics is not the logical operators, but the content
that they apply over.

• How do we define a theory of content that is robust in the sense of generalizing
across linguistic form, and compositional in the sense of:

– being compatible with logical operator semantics and
– supporting commonsense inference?
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Previous Work

• Many have tried and failed to build a form-independent semantics.

(1) Thomason, 1974: ∀x[bug′x ⇒∃y[plants′(y)∧ kill′y x]]
McCawley, 1968: [SCAUSE BUGS[SBECOME[SNOT[SALIVE PLANTS]]]]
Dowty, 1979: [CAUSE[DO BUGS ∅][BECOME¬[ALIVE PLANTS]]]
Talmy, 2000: Bugs ARE-the-AUT HOR′′-OF [plants RESULT -TO-die]
Van Valin, 2005: [do′(bugs′,∅)]CAUSE[BECOME[dead′(plants)]]
Goddard, 2010: BUGS do something to PLANTS; because of this, something
happens to PLANTS at the same time; because of this, something happens to
PLANTSs body; because of this, after this PLANTS are not living anymore.
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Previous Work

• Cf. graphical representations of (Schank, 1972, Langacker, 2008, passim)

• Cf. WordNet (Fellbaum, 1998), VerbNet/PropBank (Hwang et al., 2010),
AMR (Banarescu et al., 2012).

Z Hand-built semantic resources are inevitably incomplete.

• Why not let machine learning do the work instead?

• Treat the semantic primitives as hidden.
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Two (Somewhat) New Approaches

• (Clustering by Collocation (Church and Hanks, 1989; Landauer and Dumais,
1997; Lin, 1998; Baroni and Zamparelli, 2010; Grefenstette and Sadrzadeh,
2011; Padó and Lapata, 2007; Mikolov et al., 2013, passim).

– Meanings are vectors
– Composition is via Linear Algebraic Operations
– Good for underspecification and disambiguation (Analogy tasks and Jeopardy

questions).

• (Clustering by Denotation (Lin and Pantel, 2001; Hovy et al., 2001; Lewis and
Steedman, 2013a; Reddy et al., 2014, passim).

– Meanings are automatically extracted hidden relations.
– Composition is via traditional Logical Operators
– Good for inference of entailment.
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I: Clustering by Paraphrase

• We seek to cluster expressions denoting the same relation. Instead of lexicons
like the following:

(2) author:=N/PP[of ] : λxλy.author′xy
write :=(S\NP)/NP : λxλy.write′xy

• —we seek a lexicon capturing entailment via logical forms defined in terms of
clusters of related meanings, like the following:

(3) author:=N/PPof : λxbookλyperson.relation37′xy
write :=(S\NP)/NP : λxbookλyperson.relation37′xy

• Such a “distributional” lexicon for content words works exactly like hand-built
lexicons (1) with respect to the logical operator semantics of quantification
and negation.
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Method

• We obtain the clusters by parsing Gigaword text with the CCG-based C&C
parser, augmented with the semantics from Steedman 2012, using a lexicon
of the first type (2), to identify expressions relating Named Entities such as
Google, YouTube, Scott, Waverley, etc.

• Nominal compounds for the same MUC named entity type are merged.

• Entities are soft-clustered into types according to a topic model based on LDA
(Blei et al. (2003)) to induce type distributions for the named entities,
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Method

•
Type Most frequent members
1 suspect, assailant, fugitive, accomplice
2 author, singer, actress, actor, dad
5 city, area, country, region, town, capital
8 subsidiary, automaker, airline, Co., GM
10 musical, thriller, sequel, special

Z The topic model types all words, not just named entity identifiers like GM.
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Method

• These types are used to distinguish homonyms like the two versions of the
born in relation relating PERSONS to DATES versus LOCATIONS

• Typed relations are hard-clustered based on Gigaword counts using a simple
nonparametric algorithm Chinese Whispers (Biemann 2006; Fountain and
Lapata 2011), which is highly scalable.

• Clustering is distributional, based on cosine similarities between tf-idf vectors
of argument-pair counts for each predicate of a given type.

• We can then parse over full NPs in the target text using the clustered relations,
as well as over the original named entities.
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Example

• Obama was born in Hawaii.

(4) born := (S\NP)/PP[in] : λxλy.
{

x = LOC∧ y = PER ⇒ rel49
x = DAT ∧ y = PER ⇒ rel53

}
xy

Obama :=
{

PER = 0.9
LOC = 0.1

}
Hawaii :=

{
LOC = 0.7
DAT = 0.1

}
• The “Packed” Distributional Logical Form

(5) S :
{

rel49 = 0.63
rel53 = 0.27

}
hawaii′obama′
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Evaluation: on Artificial Questions

• Our evaluation is based on Poon and Domingos (2009).

• We automatically construct a set of questions from answers found in
dependency-parsed text, and then evaluate how many answers can be found in
a different corpus.

• For example, from Google bought YouTube, we generate questions What
bought YouTube? and What did Google buy?.

• We then attempt to answer the questions from a different text, same-genre
corpus, using human judges to evaluate based on the sentence(s) found.

• Multiple answers count all answers.
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Results: Question-Answer Test Set

• Examples:

Question Answer From Unseen Sentence:

What did Delta merge with? Northwest The 747 freighters came with Delta’s acquisition of

Northwest

What spoke with Hu Jintao? Obama Obama conveyed his respect for the Dalai Lama to

China’s president Hu Jintao during their first meeting

What arrived in Colorado? Zazi Zazi flew back to Colorado. . .

What ran for Congress? Young . . . Young was elected to Congress in 1972

• Full results in Lewis and Steedman (2013a)
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Results: Question-Answer Test Suite

•
System Answers Correct
Relational LDA 7046 11.6%
REVERB 180 89.4%
CCG-Baseline 203 95.8%
CCG-WordNet 211 94.8%
CCG-Distributional@250 250 94.1%
CCG-Distributional@500 500 82.0%

• “Relational LDA” is Yao et al. 2011 trained on 35% of Gigaword.

• “REVERB is a sophisticated Open Information Extraction system (Fader et al.,
2011).
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Fracas Test Suite

• Example:
Premises Every European has the right to live in Europe

Every European is a person

Every person who has the right to live in Europe

can travel freely within Europe

Hypothesis Every European can travel freely within Europe

Solution: Yes

• Further experiments including FRACAS in Lewis and Steedman 2013a.
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II: Directional Entailments: The Hidden Language
of Logical Form

Z The above approach does not yet distinguish paraphrase from entailment.

• Xperson elected to Yoffice does entail Xperson ran for Yoffice but not vice versa.

Z The paraphrase relation depends on more global properties of the named entity

relation graph.

• Lewis (2015); Lewis and Steedman (2014b) apply the entailment graphs of
Berant et al. (2012) to generate more articulated entailment structures.
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Local Entailment Probabilities

• The typed named-entity technique is applied to (errorfully) estimate local
probabilities of entailments using Weeds precision assymetric similarity (Weeds
and Weir, 2003):

a. p(conquer xy ⇒ invadexy) = 0.9

b. p(invadexy ⇒ attack xy) = 0.8

c. p(conquer xy ⇒ attack xy) = 0.4

d. p(bombxy ⇒ attack xy) = 0.7

(etc.)
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Global Entailments

• The local entailment probabilities are used to construct an entailment graph
using integer linear programming with a prior p = 0.25 with the global constraint
that the graph must be closed under transitivity.

• Thus, (c) will be included despite low observed frequency, while other low
frequency spurious local entailments will be excluded..

• Cliques within the entailment graphs are collapsed to a single paraphase cluster
relation identifier, as in the previous approach.
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Entailment graph

1

2

3

4

attack x y

conquer x y

bomb x y invade x y 

invasion−by−of x y

annex x y

• A simple entailment graph for relations between countries.
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Lexicon

• The lexicon obtained from the entailment graph

attack := (S\NP)/NP : λxλyλe.rel1 xye
bomb := (S\NP)/NP : λxλyλe.rel1 xye∧ rel4 xye
invade := (S\NP)/NP : λxλyλe.rel1 xye∧ rel2 xye
conquer := (S\NP)/NP : λxλyλe.rel1 xye∧ rel2 xye∧ rel3 xye
annex := (S\NP)/NP : λxλyλe.rel1 xye∧ rel2 xye∧ rel3 xye

• These logical forms support correct inference under negation, such as that
conquered entails attacked and didn’t invade entails didn’t conquer

• To answer a question “Did X invade Y” we look for sentences which subsume
the conjunctive logical form rel2∧ rel1, or satisfy its negation ¬rel2∨¬rel1.

Z Note that if we know that invasion-of is a paraphrase of invade = rel2, we also

know invasion-of entails attack = rel1.
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Experiment (Details—Skip)

• Train a local entailment classifier on a small entailment dataset of 5556
entailment problems based on pairs of Reverb extractions from Clueweb
(Zeichner et al. 2012) parsed with C&C 50-best (10% of Zeichner is held
out as a test set).

• For a Zeichner problem Rome conquered Carthage ⇒ Rome invaded Carthage
we parse to make a training instance conquer x y ⇒ invade x y.

• We turn each training instance into a feature vector on which the classifier is
trained as a function mapping vectors onto probabilities.

• The most important feature is argument pair distributional similarity in the
larger Clueweb Reverb corpus. (E.g. distSim=0.3 for this positive instance.
We use common noun heads as well as NEs.)

• The other features are derived by hand from the Zeichner training set e.g.
morphological features, WordNet relations.
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Experiment (Details—Skip)

• Next, for each ordered pairing of the n most common predicates in Clueweb
we find their feature-vector representation, including typed NE distributional
similarity in that corpus.

• We pass these to the Zeichner-supervised classifier, to obtain a probability that
each represents an entailment.
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Experiment (Details—Skip)

• Finally, we build an entailment graph on these most frequent relations in the
(still too small) 15M dataset of Reverb propositions extracted from Clueweb,
parsing with C&C.

• The graph includes the 100 most frequent relation expressions for 325 relation
types such as PERSON+LOCATION

• Entity typing as Lewis and Steedman 2013a (25 topics).

• A generalization of Berant et al. 2012 using the Zeichner set as well as Wordnet
relations etc. for the local classifier.

• Evaluate over held out Zeichner entailment data as test set by parsing
the sentences into packed logical forms including negation and quantifiers
(Steedman, 2012), using the Prover9 theorem prover.
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Experiment: Evaluation

• Testset is held-out data from the Zeichner et al. (2012) entailment set.

• Baselines are Majority Class (don’t know) and Berant et al. 2011 Non
Compositional direct entailment between reverb patterns.

• We also compare with Additive and Multiplicative Vector-based distributional
semantics (SCS) using a logistic regression classifier.

• The Zeichner entailments, unlike RTE, rely predominantly on lexical entailment.

Z This dataset does not otherwise play to the syntactic and logical strengths of

CCG, and includes many non-compositional idioms (eg light verb construction)
quite favorable to e.g. vector composition.

Z Zeichner has No negation. No quantifiers. :@(
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Examples from Zeichner et al., 2012

Premise Hypothesis Answer

Obama want to boost the defense budget Obama increase the defense budget False

The thieves make off with TVs The thieves manage to steal TVs True

My son be terrified of him My son have a fear of him True
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Results

System Accuracy (all) AUC (all)

Majority Class 56.8% 0.46

Non Compositional 57.4% 0.48

CCG Baseline 57.8% 0.46

Lewis and Steedman (2013a) 58.0% 0.50

VectorMultiplicative 61.3% 0.51

VectorAdditive 63.5% 0.57

CCG Entailment Graphs 64.9% 0.61

CCG Entailment Graphs+

Implicative Verb Lexicon 66.0% 0.62

• Last line shows the effect of adding 50 hand-coded frequent implicative verbs
where managing to win entails winning, while failing to win entails not winning
(Bos, 2013).
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• AUC is area under Precision-Recall curve, computed with a trapezoid
approximation, as a measure of reliability of confidence estimates.
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III: Clustering Cross-linguistically

• We use cross-linguistic paraphrase clusters to re-rank Moses n-best lists to
promote translations that preserve the cluster-based meaning representation
from source to target.

Z This requires a reasonably accurate parser for the source and target languages—

not necessarily CCG based. . .

• . . . although CCG helps—see Boonkwan and Steedman (2011); Boonkwan
(2013) and Ambati et al. (2013, 2014) on parsing under-resourced languages.
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Experiment: Reranking Moses Translations

• For a source (French) sentence that can be dependency-parsed to deliver a
cluster-semantic logical form:

• We Moses-translate (to English) taking the 50-best list and parsing (with
C&C) to produce cluster-semantic logical forms.

• If the logical form of the top ranked translation is the same as that of the
source sentence, we discard this trial as uninformative.

• If the logical form of the top ranked translation is different from the source,
we choose whatever translation from the remainder of the n-best list has the
logical form that most closely resembles the source cluster semantics.

• Fluent bilingual human annotators are then asked to choose between the
one-best Moses translation and the cluster-based alternative.
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Example
Source: Le Princess Elizabeth arrive à Dunkerque le 3 août 1999
SMT 1-best: The Princess Elizabeth is to manage to Dunkirk

on 3 August 1999.
Reranked 1-best: The Princess Elizabeth arrives at Dunkirk on 3 August 1999.
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Reranking Moses

•
Percentage of Translations preferred

1-best Moses 5%
Reranked best 39%
No preference 56%

• Many cases of “no preference” were where Moses and the prefered translation
were similar strings differing only in attachment decisons invisible to the human
judges.

Z No parallel text was harmed/used in these experiments.

• This is good, because SMT has already used up all of the available parallel
text (Och, 2007)!

• Full results in Lewis and Steedman (2013b).
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IV: What Relations Can We Learn This Way?

• The most urgent extension needed is to one place relations, many of which are
nominal. This would amount to automatically building or extending WordNet
using the present technique.

• The strong effect of our hand-coded implicative verbs like “X managed to Y”
as entailing “X Yed” suggests that it would be possible to learn entailment
graphs over them and their paraphrases in the same way as main verb relations.

• The same observation applies to light verb constructions, like “Take a trip”.

• Presuppositions which are entailed both by Factive verbs like “know” and
their negation, are treated non-conjunctively, as arising from factive definite
reference.

Steedman, Univ. of Edinburgh Dialogue, RSUH Moscow 1st June 2016



34

Generalizing Entailment to Temporal Semantics

visit x y

1
2

4

5
vacation−in x y

3
have−arrived−in x y

reach x y

be−in x y

be−visiting x y

arrive−in x y depart−from x y

leave x y

holiday−in  x y

stop−off−at x y

• A simple entailment graph for relations over events does not capture relations
of causation and temporal sequence entailment.
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Temporal Semantics

• As in the case of the semantics of content words like nouns and verbs,
the semantics of tense, aspect, modality, evidentiality, and intensionality
has always seemed to bog down in conflicting and overlapping ontology,
and ill-defined or world-knowledge-entangled notions like “inertia worlds”,
“relevance”, “extended now”, “perfect time span”,“consequent state”,
“preparatory activity”, and the like.

– #Einstein has visited New York (vs. Einstein visited New York).
– #I have forgotten your name but I have remembered it again

(vs. I forgot your name but I remembered it again).

• Such relations seem like A Suitable Case for Treatment as hidden relations,
letting machine learning find out what the consequent states of people visiting
places, forgetting and remembering things, etc. usually are.
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Temporal Semantics from Timestamped Data

• Pilot experiments have begun with timestamped news under a Google Faculty
Award, using the University of Washington NewsSpike corpus of 0.5M
newswire articles (Zhang and Weld, 2013).

{"arg1":"OBAMA","arg2":"MINNEAPOLIS","sentences":
[{"relationphrase":"be in","tokens":
["Obama","is","in","Minneapolis","to","push","for","tougher","gun","laws","and","highlight","some","of","the","things","the","city","has","done","to","try","and","reduce","gun","violence","as","Mayor","R.T.","Rybak","and","some","of","his","counterparts","across","the","country","try","to","put","direct","pressure","on","firearms","makers","."],
"a1":[0,1],"a2":[3,4],"v":[1,3],"fromArticleId":371037},
{"relationphrase":"head to","tokens":
["Obama","heads","to","Minneapolis","to","sell","gun","plan","."],
"a1":[0,1],"a2":[3,4],"v":[1,3],"fromArticleId":369952},
{"relationphrase":"be visit","tokens":
["Monday",",","Obama","is","visiting","Minneapolis","to","discuss","his","plan","to","battle","gun","violence","."],
"a1":[2,3],"a2":[5,6],"v":[3,5],"fromArticleId":433846}], ... }

{"arg1":"DAVID BECKHAM","arg2":"PARIS","sentences":
[{"relationphrase":"have arrive
in","tokens":["David","Beckham","has","arrived","in","Paris","to","complete","a","dramatic","deadline","day","move","to","Paris","St-Germain","."],
"a1":[0,2],"a2":[5,6],"v":[2,5],"fromArticleId":456691},
{"relationphrase":"go
to","tokens":["David","Beckham","Goes","to","Paris",",","Kate","Middleton","Shops","Incognito",",","and","Dolce","\u0026","Gabbana","\u0027s","Court","Saga","Continues","."],
"a1":[0,2],"a2":[4,5],"v":[2,4],"fromArticleId":452413}], ... }
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Timestamped Data

• In such data, we find that statements that so-and-so is visiting, is in and the
perfect has arrived in such and such a place, occur in stories with the same
datestamp, whereas is arriving, is on her way to, occur in preceding stories,
while has left, is on her way back from, returned, etc. occur in later ones.

• This information provides a basis for inference that visiting entails being in,
that the latter is the consequent state of arriving, and that arrival and departure
coincide with the beginning and end of the progressive state of visiting.
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Reconnecting with Logical Operator Semantics

• Some handbuilt lexical entries for auxiliary verbs (closed-class words):

has := (S\NP)/(Sen\NP) : λpEλy.consequent-state(pE y)R∧R = NOW

will := (S\NP)/(Sb\NP) : λpEλy.priors ⇒ imminent-state(pE y)R)

∧R = NOW

is := (S\NP)/(Sing\NP) : λpEλy.progressive-state(pE y)R∧R = NOW

• Cf. Steedman, 1977; Webber, 1978; Steedman, 1982; Moens and Steedman,
1988; White, 1994; Steedman, 1997.
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Reconnecting with Logical Operator Semantics

• Some potentially learnable lexical entries for implicative verbs:

tried := (S\NP)/(Sto\NP) : λpEλy.reltry pE yR∧ relwant pE yR

∧preparatory-activity(pE y)yR∧R < NOW

failed := (S\NP)/(Sto\NP) : λpEλy.reltry pE yR∧ relwant pE yR

∧preparatory-activity(pE y)yR∧¬pE yR∧R < NOW

managed := (S\NP)/(Sto\NP) : λpEλy.reltry pE yR∧ relwant pE yR

∧preparatory-activity(pE y)yR∧ pE yR∧R < NOW
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Conclusions I: For Computational Linguistics

• Learning over denotations of relations over typed named entities allows us
to construct logical forms for content words as distributions over typed
conjunctions of entailments over paraphrase clusters.

• These conjunctive terms in this logical language are very close to the language-
specific grammar, and support fast inference of common-sense entailment.

• Under more traditional semantic theories employing eliminative definitions
these entailments would have been thought of as belonging to the domain of
inference rather than semantics, either as meaning postulates relating logical
forms or as “encyclopædic” general knowledge.

• This meaning representation is compatible with a traditional logical operator
semantics.
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Conclusions II: For Philosophy of Language

• Carnap (1952) introduced meaning postulates in support of Inductive Logic,
including a model of Probability, basically to keep the model small and
consistent.

• Like Katz and Fodor (1963); Katz and Postal (1964); Katz (1971), we are in
effect packing meaning postulates into the lexicon.

• This suggests that our semantic representation expresses an a pragmatic
empiricist view of analytic meaning of the kind advocated by Quine (1951).

Z It can also be viewed as a grammar-based statistical model of “meaning as

use” (Wittgenstein, 1953).
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Conclusions III: For Psychology

• Do children acquire the meaning of words like “annex” and “conquer” by
building entailment graphs?

• I suggest they do, and that this is the mechanism for what Gleitman (1990)
called syntactic bootstrapping of the lexicon—that is:

– Once children have acquired core competence (by semantic bootstrapping
of the kind modeled computationally by Kwiatkowski et al. 2012 and Abend
et al., 2016), they can detect that “annex” is a transitive verb meaning
some kind of attack without knowing exactly what it means.

– They can then acquire the full meaning by piecemeal observation of its
entailments and paraphrases in use.

Z This is a major mechanism of cultural inheritance of concepts that would

otherwise in many cases take more than an individual lifetime to develop.
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Conclusions IV: For Cognitive Science

• These terms compile into a (still) language-specific Language of Thought
(Fodor 1975, passim), which is roughly what adult speakers do their thinking
in.

• To the extent that the cliques or clusters in the graph are constructed from
multilingual text, this meaning representation will approximate the hidden
language-independent “private” Language of Mind which the child language
learner accesses.

• However, very few terms in any adult logical form correspond directly to the
hidden primitives of that Language of Mind. (red and maybe attack might be
exceptions.)

Z Even those terms that are cognitively primitive (such as color terms) will not

be unambiguously lexicalized in all languages.
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Conclusions V: For Artificial Intelligence

Z Some conceptual primitives, such as that things can only be in one place at

a time, probably predate human cognition, and are unlikely to be discoverable
at all by machine reading of the kind advocated here.

• These properties are hard-wired into our minds by 600M years of vertebrate
evolution.

• These are exactly the properties that Artificial Intelligence planning builds in
to the representation via the “Closed World Assumption” and the STRIPS
dynamic logic of change.

• Computational Lingustics should learn from AI in defining a Linear Dynamic
Logic for distributional clustered entailment semantics.
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