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Sentence compression is the task of removing redundant information from 
a sentence while preserving its original meaning. In this paper, we approach 
deletion-based sentence compression for the Russian language. We use 
the data from the plagiarism detection corpus (ParaPlag) to create a corpus 
for sentence compression in Russian of almost 3,000 pairs of sentences. 
We align source sentences and their compressions using the Needleman-
Wunsch algorithm and perform human-evaluation of the corpus by read-
ability and informativeness.  
 Then we use bidirectional LSTM to solve sentence-compression task 
for Russian, which is a typical baseline for the problem. We also experiment 
with RuBert and Bert-multilingual. For the latter, we use transfer-learning, 
firstly pretraining the model on English data, which improves performance. 
We conduct human evaluation by readability and informativeness and do er-
ror analysis for the models. We are able to achieve f-measure of 74.8%, read-
ability of 3.88 and informativeness of 3.47 (out of 5) on test data. We also 
implement post-hoc syntax-based evaluator, which can detect some of the 
wrong compressions, increasing overall quality of the system.  
 We provide the data and baseline results for future studies
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СЖАТИЕ ПРЕДЛОЖЕНИЙ РУССКОГО 
ЯЗЫКА: ДАТАСЕТ И БЕЙЗЛАЙНЫ

Кувшинова Т. (tatiana.kuvsh@yandex.ru)
Национальный исследовательский университет 
«Высшая школа экономики», Москва

Сжатие предложений — задача по удалению избыточной информации 
из предложения при сохранении его первоначального смысла. В этой 
статье мы обращаемся к сжатию предложений на основе удаления 
для русского языка. Мы используем данные из корпуса выявления 
плагиата (ParaPlag) для создания корпуса сжатых предложений рус-
ского языка, содержашего более чем 3000 пар предложений. Мы вы-
равниваем исходные предложения и их сжатия, используя алгоритм 
Нидлмана-Вунша, и проводим ручную оценку корпуса по читаемости 
и информативности.  
 Затем мы используем двунаправленную LSTM для решения за-
дачи сжатия предложений русского языка, что является типичным 
способом решения этой задачи. Мы также экспериментируем с RuBert 
и многоязычным Bert. В последнем случае мы используем трансфер-
ное обучение, сначала обучая модель на английских данных, что улуч-
шает качество работы системы. Мы проводим ручную оценку по читае-
мости и информативности и анализ ошибок для моделей. Мы достигли 
f-меры 74,8%, читаемости 3,88 и информативности 3,47 (из 5) на те-
стовых данных. Кроме того, мы разработали синтаксический оценщик, 
который может распознать некоторые из неправильных сжатий пред-
ложений, позволяя увеличить общее качество системы компресии.  
 Мы предоставляем данные и результаты бейзлайнов для будущих 
исследований.

Ключевые слова: сжатие предложений, сокращения, суммаризация, 
корпус

1. Introduction

Sentence compression is a text-to-text rewriting task of shortening a sentence 
by omitting redundant information while preserving the main points. Usually, a “per-
fect” compression is a difficult paraphrase task, involving removing, reordering and 
inserting operations. However, the problem is often narrowed down to deletion-based 
sentence compression.

Deletion-based sentence compression is performed by removing some words from 
the original sentence. The remaining words form compression in the exact same order 
as they appeared in the original sentence. This problem can be solved as a sequence 
labeling binary classification task—we classify each token in the original sentence with 
“stay” or “delete” label and then remove all the tokens with the “delete” label.
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Sentence compression for English has attracted many researchers. An important 
milestone in the field was the release of a large parallel compression corpus by Google [4] 
and as well as applying deep learning techniques, especially LSTMs to the problem [3]. 
The most recent results in the field are achieved by complex models, combining LSTM 
with some additional techniques, for example, language model evaluator [11], [18].

However, to the best of our knowledge sentence compression has never been 
solved for Russian, which is easily explained by the lack of parallel data and complex 
structure of the language. In this paper, we approach deletion-based sentence com-
pression for Russian. We present a parallel sentence-compression corpus for Russian 
with almost 3 thousand sentences based on The ParaPlag [15] data. We also conduct 
experiments with several data-driven models for sentence compression, which are bi-
directional LSTM, RuBert-compression, and MultiBert-compression. We build syntax-
tree based evaluator over compression systems to improve compression quality and 
perform an automatic and human evaluation of the results.

We hope that our work will serve as a pivot point for future researches.

2. Data

Data-driven solutions to natural language processing problems are usually data-
hungry. Deletion-based sentence compression requires a large parallel corpus with 
sentence-compression pairs. Such data has no evident natural source (as, for example, 
parallel translation data) and no specific sentence compression corpora have yet been 
released for Russian.

In this paper, we use data from the Russian dataset for paraphrased plagiarism 
detection [15] to construct a deletion-based sentence-compression corpus for Rus-
sian. The corpus contains about 20 thousand manually paraphrased source-plagia-
rism pairs. Sometimes, when a person plagiarises a sentence, he or she summarizes 
or expands it. Fortunately, such examples are annotated in the corpus. We use them 
as a source for our dataset.

There are 7,298 such pairs of sentences in the dataset. Some of them are also 
paraphrased, in such cases we resolve the paraphrase before further processing. For 
example, for the source pair of sentences:

 Sentence: Книги Толкина послужили основой для создания множества 
настольных, компьютерных и видеоигр как для PC, так Mobile.

 Compression: Книги Толкина стали основой для создания настольных, 
компьютерных и видеоигр.

As a result of paraphrase resolution the compression will become:

 Книги Толкина послужили основой для создания настольных, 
компьютерных и видеоигр.

We exclude those sentences where a paraphrase cannot be resolved automati-
cally (for example when it is adjacent to deletion and its boundaries cannot be clearly 
established).
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Then we tokenize a source sentence and its compression and align them using 
the Needleman-Wunsch algorithm for sequence alignment [13]: a dynamic program-
ming approach firstly developed for DNA sequence alignment. The result of the align-
ment for the example sentence given above will be:

Finally, we exclude all the pairs with a compression rate higher than 0.7 (tradi-
tionally, small compression rate corresponds to shorter compressions, i.e. a compres-
sion rate is a proportion of words to stay). We make that decision because the sen-
tences with high compression rate form poor training material: they are only partly 
compressed, some words that could be removed are not removed from them. Thus, 
a compression system would be confused by the training data inconsistency.

The remaining data contains 2,955 pairs of sentences. We split it into the train 
and test set as follows:

Table 1: The parallel sentence-compression 
corpus statistics and train-test split

set no. sentences no. tokens compression rate

train 2,659 66,238 0.55
test 296 7,450 0.56

Common metrics for compression quality evaluation are readability and in-
formativeness [12]. Readability addresses grammatical correctness and naturality 
of a compressed sentence. Informativeness shows a degree to which original mean-
ing was preserved in the compression. We asked three native Russian speakers to an-
notate the first 150 sentence-compression pairs from the test set by readability and 
informativeness using a 5-grade scale. The first annotator has annotated all 150 pairs 
of sentences, the second—the first 100 pairs and the third—the pairs from 101 to 150, 
thus giving two annotations for every pair of sentences. As a result, we got a mean 
readability of 4.68 and mean informativeness of 4.03.

We make the sentence-compression corpus available online for future researches.1

3. Experiments

3.1. LSTM

Bidirectional long-short term memory networks form strong baselines and are 
used as baselines in the majority of recent papers about sentence compression in Eng-
lish [3, 7, 11, 18]. That is why we decided to use biLSTM as our baseline as well.

We build a 3-layered biLSTM network with input and hidden layers of 300 dimen-
sions and a softmax output layer. We use binary cross-entropy loss function and Adam 
optimizer. We initialise our model with tayga_none_ fasttextcbow_300_10_2019 vec-
tors by RusVectōrēs project [10]. We also allow the model to finetune embeddings 

1 download at https://goo-gl.su/EqQvj8

https://goo-gl.su/EqQvj8
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during training. We lemmatize the corpus before training making it compatible with 
embeddings using the Russian UdPipe Syntagrus model [16].

We implement our model using PyTorch and train it on sentence-compression 
data for Russian with the following parameters: learning rate of 1e − 3, weight decay 
of 1e − 3, dropout of 0.35 and mini-batch size of 20 sentences. We do not finetune any 
parameters and train the model until test loss starts increasing, which is 20 epochs 
on our data.

We then evaluate the model and present the results in the Evaluation section.

3.2. RuBert

BERT model has outperformed state of the art results in many natural language 
processing tasks [1], so it was only natural to approach sentence compression task 
with it.

We add a linear classification layer on top of the BERT hidden-states output and 
use Cross-Entropy for the loss function. We use Adam optimizer.

We implement the model using PyTorch transformers and use the pretrained 
RuBert model by DeepPavlov [8] to initialize the model. We convert Deeppavlov Ru-
Bert checkpoint to PyTorch-transformers Bert checkpoint to be able to use the same 
architecture and training procedure for RuBert and original Multilingual Bert model 
(described in the next subsection). Then we train it on Russian compression data with 
a learning rate of 3e − 5 and minibatch of 8 sentences until the loss starts increasing 
on the test set, which takes 6 epochs for our data. We do not finetune any parameters.

The evaluation results are presented in the Evaluation section.

3.3. M-Bert

Multilingual Bert was proven to be good at cross-lingual model transfer [14], 
i.e. finetuning M-Bert to solve a task on a one language data allows solving the same 
task for other languages with little drop in quality. Authors hypothesize that the rea-
son behind that behavior may be that similar words in different languages are sur-
rounded by the same universal symbols (such as punctuations, numbers, etc.) and 
therefore learn similar vector representation. Therefore it makes sense to finetune 
M-Bert on English sentence-compression data before solving the task for Russian.

We use the same model architecture as for RuBert model. Firstly, we finetune 
the model on 8,000 English sentence-compression pairs from the first release of the 
Google sentence-compression dataset [4]. We train the model until the loss of 1,000 
English test set starts increasing, which takes 3 epochs. Then we further train 
it on Russian sentence-compression pairs, again, until an increase in test loss, which 
takes 3 epochs.

For comparison we also train M-Bert model on Russian data only with the same 
parameters (i.e. skipping the first part of training procedure). This enables us to dis-
tinguish between the impact of fine-tuning and initial model quality.

Finally, we evaluate the models and present the results in the Evaluation section.
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4. Post-hoc syntax evaluator

4.1. Foundation

Compression models performances can be inconsistent: they can compress cor-
rectly one sentence and fail with another. This sort of behaviour is highly undesirable 
for a service and neural network algorithms are hardly controlled and debugged. That 
is why we considered building post-hoc evaluator to separate correctly compressed 
sentences from damaged ones.

Inspired by tree cutting approaches to sentence compression [5], [6], [9], we de-
cided to build a syntax-tree based evaluator. The tree cutting approach is based on the 
idea that parts of a sentence close to dependency graph root are preserved during 
compression, while leaves are dropped out. At the same time it is ungrammatical to re-
move a head preserving it’s child, i.e. the resulting graph ought to be a subgraph of the 
source graph with the same root.

Consider the following example: Сокращая предложения, будьте очень вни-
мательны. and its dependency graph below, as well as dependency graphs of its 
deletion-based compressions.

Figure 1: Source sentence dependency graph

Figure 2: Correct 
compression graph

Figure 3: Correct 
compression graph

We see that potentially correct compression Сокращая, будьте внимательны. 
is a subgraph of the source sentence graph. On the opposite, potentially wrong com-
pression has a “cut off” node очень, which has lost it’s head. Such transformation 
is usually ungrammatical and should not be allowed in the compression system.

4.2. Implementation

We use Universal Dependencies syntax parser [17] and Russian Udpipe Syn-
tagrus model [2] for syntax parsing. Firstly, we build syntax trees for source and com-
pressed sentences. Then we count tree distance—number of nodes that have changed 
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their parents (which presumably happened because their original head was removed 
by compression system).

Mostly, any deviation from a source sentence subgraph indicates an ungram-
matical compression. However, due to possible syntactic parser mistakes and several 
corner cases such as conjunction treatment, we would like to allow at least some flu-
ency to an algorithm. To determine a threshold after which we consider a compres-
sion wrong, we calculate tree-distances between source sentences and gold compres-
sions from the train dataset. We normalize distances over compression length to get 
a proportion of tokens that changed their heads and get the following normalized tree 
distance distribution:

Figure 4: Normalized tree distance distribution over the train set

Based on the distribution and examples analysis we chose a threshold of 0.1—all 
compressions with higher proportion of misplaced nodes are considered wrong.

Our syntax evaluator doesn’t directly improve the models performances, it only 
shows probably ungrammatical compressions, cases where the model have failed. 
Leaving those sentences uncompressed allows to trade off recall for precision.

5. Evaluation

While automatic evaluation using test data is a good way to access model perfor-
mance, it is not sufficient for sentence compression task. For example, removing a sub-
ject from a sentence can give us accuracy of > 90%, and yet the sentence can become 
completely ungrammatical and uninformative. It is possible that in an experiment 
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a model with the maximum F-score and a model producing the most readable com-
pressions are different ones [11]. That is why we perform both automatic and human 
evaluation of the results.

5.1. Automatic evaluation

We evaluated the models’ performance on our 296 sentences test-set. For every 
model we evaluated its performance as a standalone system and combined with syn-
tax evaluator. When using syntax evaluator, we excluded those compressions that 
were marked as probably wrong, i.e. evaluated only sentences approved by syntax 
evaluator. You can see evaluation results in the table below:

Table 2: F1-score on test data for LSTM, RuBert and M-Bert 
models; “f1-delete” is F1 measure for delete labels, “f1-stay” 
is F1 measure for stay labels and “f1” is weighted-averaged 
F1 measure between labels; SE stands for Syntax evaluator

model
f1, 
%

f1-delete, 
%

f1-stay, 
% training data

LSTM 74.8 71.3 77.5 2,659 Russian pairs
LSTM + SE 77.1 70.1 81.3 2,659 Russian pairs
RuBert 67.9 63.0 71.6 2,659 Russian pairs
RuBert + SE 70.2 68.5 71.7 2,659 Russian pairs
M-Bert (ru) 67.1 63.8 72.1 2,659 Russian pairs
M-Bert (ru) + SE 68.2 64.9 73.5 2,659 Russian pairs
M-Bert 69.3 64.4 73.0 8,000 English + 2,659 Russian pairs
M-Bert + SE 70.8 65.5 74.5 8,000 English + 2,659 Russian pairs

As we can see, baseline LSTM surprisingly performs better than Bert-base mod-
els. M-Bert trained with both English and Russian data exceeds both Ru-Bert and 
M-Bert trained with Russian data only, it shows the promise of using transfer-models 
for sentence compression task.

Systems using syntax evaluator show higher performances than row models, 
however they leave some sentences uncompressed.

5.2. Human evaluation

We asked three native Russian speakers to evaluate systems’ compressions 
as well as gold compressions of the same sentences by readability and informativeness 
using a 5-grade scale. The first annotator has evaluated compressions for the first 150 
sentences of the test-set (600 sentences), the second—the first 100 sentences of the 
test-set (400 sentences) and the third—compressions of sentences from 101 to 150 
of test-set (200 sentences). Compressions were presented to annotators in random or-
der so that they don’t know which system (or gold compression) they are evaluating. 
Agreement rate (Pearson correlation) between annotators is presented in the table 
below:
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Table 3: Agreement rate (Pearson correlation) between 
annotators; the p-value is less than 1e − 9 for every test

annotator pair readability informativeness sentences in common

1 & 2 0.75 0.66 1–100
1 & 3 0.86 0.78 101–150

We consider the agreement rate satisfactory.
We also evaluate test data after processing it with syntax evaluator. We exclude 

sentences and compressions marked by syntax evaluator as inappropriate before cal-
culating metrics. Note, that this inevitably increases compression rate, as some sen-
tences remain uncompressed. We evaluate gold compressions by the same procedure.

Table 4: Mean readability, informativeness and compression rate for 
LSTM, RuBert, M-Bert models and gold data for the first 150 sentences 

of the test set; SE stands for syntax evaluator; higher compression 
rate corresponds to longer compressions and compression rate 

includes uncompressed sentences for models with SE

model readability informativeness
sentences 
excluded by SE

compression 
rate

Gold 4.68 4.03 0 0.56
Gold + SE 4.73 4.13 35 0.73
LSTM 3.84 3.29 0 0.54
LSTM + SE 4.10 3.61 49 0.78
RuBert 3.46 3.26 0 0.58
RuBert + SE 3.59 3.42 81 0.85
M-Bert 3.88 3.47 0 0.62
M-Bert + SE 4.07 3.71 55 0.84

We provide evaluation results for gold compressions from the test set for better 
comparison. We encourage any future researches of sentence compression in Russian 
to evaluate gold compressions as well. The reason is different annotators may have 
different ideas about subjective metrics as readability and informativeness, so hu-
man-evaluation results are hardly comparable between studies. However, evaluating 
the same set of gold compressions will allow leveling systems’ results in comparison 
with gold compressions.

We see that M-Bert is better than other models in both readability and informa-
tiveness, even though it had had much lower f-measure than the LSTM model. We see 
that apparently training on a large English corpus allows the model to better general-
ize in sentence-compression task.

Applying syntax evaluator after compression system (excluding syntactically 
broken compressions) increases compressions readability and informativeness at the 
expense of increasing compression rate. The difference between a raw model and 
a model with post hoc evaluator is higher for initially worse models (where more com-
pressions had to be excluded). However, RuBert model shows relatively low readability 
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and informativeness even after syntax evaluator excluded more than a half of its com-
pressions from analysis. After applying syntax evaluator the systems remove only 
about 15–20% of words on average, but this may be desirable results in some cases.

5.3. Examples and error analysis

While we consider evaluation results more than satisfactory for the first experience 
in sentence compression for Russian, there are still many cases when the models fail 
to produce grammatical and informative compression. We will discuss them and pos-
sible approaches to improving systems’ performance in this subsection. We mark those 
compressions which were considered inappropriate by syntax evaluator with asterisk (*).

One of the frequent mistakes made by the models is the meaning travesty. Words 
deletion can sometimes radically change meaning as in the following examples:

(1) Source sentence: К тому времени Фрида уже не могла встать с постели. 
LSTM: Фрида не могла встать. 
RuBert: Фрида могла встать с постели. 
M-Bert: Фрида уже не могла встать с постели.

(2) Source sentence: В октябре 2011 года робот CubeStormer II, специально  
 собранный из 4 наборов конструктора Lego Mindstorms, 
 побил рекорд человека и собрал кубик за 5,53 секунды. 
LSTM:  В октябре 2011 года робот CubeStormer II, специально  
 собранный из 4 наборов конструктора Lego Mindstorms,  
 побил рекорд человека. 
RuBert:  В октябре 2011 года робот CubeStormer II, специально  
 собранный из 4 наборов Lego Mindstorms побил. 
* M-Bert:  В октябре 2011 года робот CubeStormer II, специально  
 собранный из 4 наборов конструктора Lego Mindstorms,  
 побил человека.

In the first example, RuBert system removes negation giving the sentence an op-
posite meaning. The syntax evaluator does not penalise those compressions, because 
in Universal Dependencies grammar negation is dependent on its verb. This case can 
be, however, addressed by merging negation to the following verb at preprocessing 
stage (which, of course, will require embeddings trained in such way).

In the second example M-Bert system removes word рекорд, the sentence stays 
completely grammatical, but the meaning changes from The robot broke human re-
cord to The robot beat a man... The head in noun phrase рекорд человека is рекорд. 
The complement человека cannot stay when its head was removed, but the system 
is apparently confusing the noun phrase for a typical Adjective+Noun phrase and is re-
moving the first word. Providing the models with some syntactic information could 
improve performance. At the same time, in this case syntax evaluator is able to detect 
wrong transformation and marks the compression as inappropriate.

Another typical situation when the systems produce wrong compressions is the 
presence of a point inside a sentence (in an abbreviation or as a part of a number). 
It would appear that the system mistake this point to end-of-sentence point and get 
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rather confused seeing tokens passed after it. The resulting compressions are barely 
readable:

(3) Source sentence:  В финале соревнования по игре Painkiller в 2005 г. его   
 выигрыш составил, ни много ни мало, 150 000 долларов. 
* LSTM: В финале соревнования по игре. 
* RuBert:  В финале соревнования по игре Painkiller. 150 000   
 долларов. 
* M-Bert:  В финале соревнования по игре Painkiller в 2005 г. его   
 выигрыш составил ни.

To avoid such mistakes it is possible to remove inline points or change them 
to different symbols while preprocessing. Syntax evaluator detects severe changes 
in syntax structure in all systems’ compressions.

6. Results

In this paper, we have addressed the problem of deletion-based sentence com-
pression in Russian. We have prepared and preprocessed a parallel corpus of 2,955 
sentence-compression pairs based on the data if ParaPlag corpus [15]. We asked three 
native Russian speakers to evaluate the corpus quality and got mean scores of 4.68 for 
readability and 4.03 of informativeness (out of 5).

We then build three sentence compression systems for Russian: bidirectional 
LSTM, RuBert based model and multilingual Bert based model. We train LSTM and 
RuBert with our corpus and multilingual Bert on both English sentence-compression 
data from [4] and our corpus.

We also implement post-hoc syntax evaluator based on source and compression 
syntax trees comparison. The evaluator does not improve compressions, but is able 
to detect some of wrong compressions, which could prove useful in applying systems 
to real data.

We conduct both automatic and human evaluation of the results. LSTM model 
achieves the highest f-measure on the test set, which is 74.8%. The multilingual 
Bert based model is the best judging by human evaluation: it achieves readability 
of 3.88 and informativeness of 3.47 (out of 5).

Applying syntax evaluator (evaluating only compressions approved by syn-
tax evaluator) allows to achieve f-measure of 81.3% (for LSTM model), readability 
of 4.10 and informativeness of 3.71 (for multilingual Bert). However, the system with 
syntax evaluator simply doesn’t compress lots of sentences, increasing average com-
pression rate as the result.

We give several examples of models’ performance and do error analysis.
Our work is the first to the best of our knowledge dedicated to sentence compres-

sion in Russian. We consider the achieved results as a good start and certainly hope 
that future researches will consider the topic and will be able to surpass our results.
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