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In this paper we describe question answering system for answering of com-
plex questions over Wikidata knowledge base. Unlike simple questions, 
which require extraction of single fact from the knowledge base, complex 
questions are based on more than one triplet and need logical or compara-
tive reasoning. The proposed question answering system translates a natu-
ral language question into a query in SPARQL language, execution of which 
gives an answer. The system includes the models which define the SPARQL 
query template corresponding to the question and then fill the slots in the 
template with entities, relations and numerical values. For entity detection 
we use BERT-based sequence labelling model. Ranking of candidate rela-
tions is performed in two steps with BiLSTM and BERT-based models. The 
proposed models are the first solution for LC-QUAD2.0 dataset. The sys-
tem is capable of answering complex questions which involve comparative 
or boolean reasoning.
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С ПОМОЩЬЮ BERT И BILSTM
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В данной работе описывается вопросно-ответная система для ответа 
на сложные вопросы по базе знаний Wikidata. В отличие от простых во-
просов, для ответа на которые требуется найти один факт в базе зна-
ний, сложные вопросы требуют извлечения более 1 триплета, а также 
логические или сравнительные рассуждения. Предложенная система 
переводит вопрос на естественном языке в запрос на языке SPARQL, 
выполнение которого дает ответ. В состав системы входят модели, 
которые определяют шаблон SPARQL-запроса, соответствующего во-
просу, и затем заполняют пустые места в шаблоне сущностями, от-
ношениями и численными значениями. Для извлечения сущностей 
мы использовали модель маркировки последовательностей на основе 
BERT. Ранжирование возможных отношений для вопроса происходит 
в два этапа с помощью моделей на основе BiLSTM и BERT. Предложен-
ные модели — первое решение для датасета LC-QUAD2.0. Система 
способна отвечать на вопросы, требующие сравнительное или логи-
ческое рассуждение.

Ключевые слова: база знаний, ответ на сложные вопросы, генерация 
запросов, извлечение сущностей, извлечение отношений

1. Introduction

Question answering has been an active area of research over past decades. Ques-
tion answering systems can use two kinds of sources to find an answer: unstructured 
text corpora [11], [10], and knowledge bases (KB). KBs are an important source of in-
formation which integrates information from different sources [15]. Question an-
swering models using KBs are compact and interpretable [16].

Knowledge base question answering (KBQA) requires matching of a subgraph 
with a question. If the question corresponds to a single triplet in a KB, the task is called 
simple question answering [1]. Complex question answering requires matching sev-
eral triplets and logical, quantitative and comparative reasoning over knowledge 
graphs [13], [4].

One of the key approaches to complex question answering is SPARQL query gen-
eration. LC-QUAD [13] is a dataset with 5,000 questions and corresponding SPARQL 



SPARQL query generation for complex question answering with BERT and BiLSTM-based model

 3

queries over DBpedia, which involve logical and quantitative reasoning. LC-QUAD2.01 
[4] is a dataset of 30,000 questions compatible with both DBpedia and Wikidata2, 
which contains more types of SPARQL queries compared with previous version. The 
queries involve ranking of graph edges, boolean reasoning over more than one triplet 
and comparative constraints.

In this paper we describe models for SPARQL query generation trained on 
LC-QUAD2.0 dataset. For translation of a question to a SPARQL query, we first define 
the type of the query template. Then we fill the empty slots in the template with entities, 
relations from Wikidata and constraints. For entity detection we use BERT sequence la-
beling model. Relation ranking is performed by BiLSTM, path ranking—by BERT-based 
ranking model. We use pretrained cased 12-layer BERT-Base3. For extraction of compar-
ative constraints we use regular expressions. Our KBQA system is capable of answering 
complex questions with logical or comparative reasoning. The proposed KBQA system 
was released as a component of open-source DeepPavlov library4.

2. Related work

The first approaches to KBQA considered single-fact questions. Simple Questions 
[1] is the most widely used dataset for training models to answer single triplet ques-
tions. The model of [1] uses memory networks to store candidate facts and then score 
them by cosine similarity between question and fact vectors (each vector is a product 
of trainable embedding matrices and bag-of-ngrams representations of the question 
and fact). In [2] relations and entities in candidate triplets are separately ranked. Dot 
product of trainable relation embedding and vector representation of the question (fi-
nal hidden states of BiGRU + linear layer) is used for scoring. Dot product of TransE 
entity embedding and vector representation of the question is used for entity scoring. 
Another approach is generation of the query with character-level encoder-decoder ar-
chitecture [5]. Encoding of questions, entities and relation labels with BiGRU at word 
and character level is described in [7].

Decomposition of knowledge-base question answering into entity detection, 
linking, relation prediction and answer parsing components is a simple approach but 
it is competitive with more complicated architectures [14]. KBQA system proposed 
in our work consists of the similar steps and several other steps specific for complex 
questions. The approach of [14] utilises vanilla RNNs for entity detection and relation 
prediction. These subtasks of KBQA can be solved with BiLSTM and BiGRU [9] and 
improve accuracy of [14] on Simple Questions dataset.

Query building for complex question answering includes query generation and 
ranking steps. Model proposed by [8] generates candidate paths in the knowledge 
graph starting from extracted entities (entity detection and linking is omitted with 

1 https://github.com/AskNowQA/LC-QuAD2.0

2 https://www.wikidata.org

3 https://github.com/google-research/bert

4 https://github.com/deepmipt/DeepPavlov

https://github.com/AskNowQA/LC-QuAD2.0
https://www.wikidata.org
https://github.com/google-research/bert
https://github.com/deepmipt/DeepPavlov
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the assumption that correct entities are given). The question and candidate paths are 
encoded with BiLSTM. Dot products of vectors representing the question and candi-
date paths are used to rank candidate paths. The approach of [18] uses Tree-LSTM 
which considers tree representations of candidate walks and the question with respect 
to the syntactical structure. Assuming that the lists of candidate entities and relations 
are given, Tree-LSTM produces latent representations of the question and candidate 
queries, which are ranked by the similarity function.

The model of [15] uses message passing for query ranking, which means propa-
gation of confidence scores from candidate entities and relations to the adjacent nodes 
in the extracted subgraph. The model also includes entity and relation extraction 
steps. The substrings in the questions in LC-QUAD dataset, corresponding to entities 
and relations, are tagged “E1”, “E2”, “P1”, “P2”, “C1”, “C2”, which means “first entity” 
in the question, “second entity” (if exists), “first relation”, “second relation” (if exists), 
“class of first entity”, etc. BiLSTM + CRF network was trained for labeling of question 
tokens sequence with the corresponding tags. After entity and relation linking, for all 
entities in the subgraph the confidence scores are aggregated from adjacent entities 
and the entity with the highest score is considered as the answer.

The work of [12] presents Complex Imperative Program Induction from Termi-
nal Rewards, a model which can perform set, logical and arithmetic operations on the 
extracted subgraph assuming that the list of gold entities and relations is given. The 
query is generated with an imperative sequential program. Each step of the program 
selects the atomic operator and a set of previously defined variables (for example, 
entities and relations), and writes the result to memory, which is used in subsequent 
steps. The model achieves state-of-the-art performance for the Complex Sequental 
Question Answering dataset.

KBQA system, proposed in this work, can perform all the steps of complex ques-
tion answering from entity extraction to query generation and is capable of answering 
to both simple questions and complex questions with boolean, quantitative and com-
parative reasoning from LC-QUAD2.0 dataset.

3. Overview of LC-QUAD2.0 dataset

Numbers of questions and percentage of the total number of questions for differ-
ent query template types in train and test sets are shown in Table 1.

Table 1: Percentage of different query template types in the dataset

Query template type

Percentage of 
the total number 
of questions

Number 
of questions, 
train set

Number 
of questions, 
test set

statement_property 25.5 5,852 1,484
right-subgraph 15.6 3,574 854
center 14.0 3,220 824
Simple question left 7.0 1,604 438
Simple question right 6.5 1,494 378
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Query template type

Percentage of 
the total number 
of questions

Number 
of questions, 
train set

Number 
of questions, 
test set

string matching simple 
contains word

6.4 1,466 338

left-subgraph 6.2 1,418 373
boolean with filter 5.8 1,331 341
rank 4.0 921 210
string matching type + 
relation contains word

2.9 662 148

two intentions right subgraph 2.6 599 141
boolean double one_hop right 
subgraph

1.8 411 89

boolean one_hop right 
subgraph

1.7 399 101

“statement_property” are complex questions which deal with a numerical value 
or date as an answer or one of the entities (1).

(1) When did Jean-Paul Sartre move to Le Havre?

“center” are single-fact questions (one entity and one relation).

“simple question right” and “simple question left” are single-fact questions and the 
answer entity is connected with one of the entities in the question with the 
relation “P31” (“instance of”).

“left-subgraph” questions require finding paths in subgraph of the length of 2.

“right-subgraph” are questions with two entities and two relations.

“two intentions right subgraph” questions contain one entity and two relations 
and these questions have two answers corresponding to two facts about the 
grounding entity.

“boolean one_hop right subgraph” and “boolean double one_hop right 
subgraph” require determining whether one or two facts are true or false. 
To solve these questions we need to look for these facts in Wikidata and if the 
facts exist in the knowledge base, we consider the statement true, otherwise 
the statement is false.

“boolean with filter” questions require comparison of the object entity with the 
numerical value from the question.

“string matching simple contains word” and “string matching type + relation 
contains word” are questions where the answer entity should contain 
a particular letter or word.

“rank” questions require ordering of answer entities by ascending or descending.
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4. Components of proposed KBQA system

4.1. KBQA pipeline

We decompose the task of KBQA into query template prediction, entity detection, 
entity linking, relation ranking, path ranking, constraint extraction (if the question has 
constraints) and generation of query from extracted entities, relations and constraints.

Let us consider as an example the steps of KBQA (Figure 1) for “statement prop-
erty” question with SPARQL query template (2).

(2) SELECT ?obj WHERE {  wd:Q1 p:P1 ?s . ?s ps:P1 ?obj . 
?s pq:P2 ?x filter(contains(?x, N)) }

On entity detection step we extract the entity substring S from the question. After 
entity linking step we obtain candidate entities E1, ..., EN with corresponding confidences 
PE1, ..., PEN. Then we extract relations R1

1, ..., R1
M, connected to entities E1, ..., EN, rank them 

with BiLSTM ranking model, and leave 15 relations R1
1, ..., R1

15 with maximal confidences 
PR1, ..., PR15. Number N for the expression “filter(contains(?x, N))” is extracted from the 
question with regular expressions. Then we execute SPARQL queries (3)

(3) SELECT ?obj ?p2 WHERE {  wd:Ei p:Rj ?s . ?s ps:Rj ?obj . 
?s ?p2 ?x filter(contains(?x, N)) }

for combinations < Ei, Rj> of entities E1, ..., EN and relations R1
1, ..., R15

1 and obtain the 
list of candidate second relations R1

2, ..., RK
2. Combinations of relations  < Rj

1, Rk
2> 

are ranked with BERT-based ranking model. The model outputs confidences PRjk. En-
tity Ei and relations Rj and Rk with maximal confidences product PEi ⋅ PRjk are filled 
in the slots of the SPARQL query template (4):

(4) SELECT ?obj WHERE {  wd:Ei p:Rj
1 ?s . ?s ps:Rj

1 ?obj . ?s pq:Rk
2 

?x filter(contains(?x, N)) }

Other types of questions are processed similarly: first we find candidate entities, then 
extract and rank candidate relations with BiLSTM, if necessary, extract numerical values 
with regular expressions, find valid combinations of entities and relations according to the 
query template, rank combinations of relations with BERT and consider combination of en-
tities and relations with maximal product of confidences as the required query.

4.2. Classification of questions by query template type

Query template types “right-subgraph”, “simple question right”, “simple question 
left”, “left-subgraph”, “center” we united into one class.

“statement_property” questions can be translated into 5 types of SPARQL que-
ries, “rank” questions—into 2 types. Each type is considered as a separate class. All 
other types of questions are put into a separate class. Total number of classes is 14.

Classification of questions is performed with BERT-based model from DeepPav-
lov library. Output representation of BERT [CLS] token is fed into a dense layer for 
classification into 14 classes. For comparison we used tf-idf+SVC model (Table 2).
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Table 2: Accuracy of question classification by query template types

BERT TF-IDF+SVC

90.8 85.5

Figure 1: KBQA pipeline

4.3. Entity Detection and Entity Linking

Entity Detection is implemented as labeling of sequence of question tokens

          qseq = {w1, w2, ..., wn} (1)

with one of two labels: “I-TAG” if the token wi is in the entity substring and “O-TAG” 
otherwise. For example, in question

(5) When did Jean-Paul Sartre move to Le Havre?

tokens “Jean-Paul”, “Sartre”, “Le”, “Havre” are labelled with “I-TAG”, the other tokens 
with “O-TAG”. We prepared the dataset from LC-QUAD2.0 for Entity Detection using 
labels of gold entities to find substrings in questions, corresponding to entities and 
annotated matched tokens as “I-TAG”. This dataset is used for training of BERT-based 
sequence labeling model from DeepPavlov library. Output representations of question 
sub-tokens are fed into a dense layer for classification of sub-tokens into classes, cor-
responding to two tags (Figure 2). We obtained F1-score of 87 on test-set.
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Figure 2: BERT for sequence tagging

For all entities in Wikidata we built an inverted index over unigrams in enti-
ty’s label (a dictionary where keys are tokens and values are lists of entities contain-
ing these tokens). Entity Linking is implemented using fuzzy matching of the string 
extracted at Entity Detection step with inverted index. For example, tokens “Jean-
Paul” and “Sartre” from the substring “Jean-Paul Sartre” are used as keys to obtain the 
list of candidate entities, and candidate entity “Q9364” with the label “Jean-Paul Sar-
tre” has the maximum fuzz ratio of 100. Candidate entities, extracted from inverted 
index dictionary, are ranked by fuzz ratio of their titles with the entity substring and 
number of relations (the more relations an entity has, the more popular it is).

4.4. Model of relation ranking

The model of relation ranking is inspired by [17] (Figure 3). The sequence 
of question tokens q1, ..., qn is passed through an embedding lookup layer. The se-
quence of Word2Vec embeddings e1, ..., en is the input of 2-layer BiLSTM to encode the 
token sequence with hidden representations h1, ..., hn. For linked entities we extract 
all relations from Wikidata which these entities have and consider them as candidate 
relations. Candidate relations are encoded with PyTorch-BigGraph embeddings [6] 
rel_emb1, ..., rel_embk. Dot products of each candidate relation embedding and hidden 
states rel_embi ⋅ h1, ..., rel_embi ⋅ hn are passed throught softmax layer to obtain coef-
ficients �1, ..., �n. Then we sum hidden states weighted with coefficients:

     q =
n∑

j=1

αi · hj  (2)

The model is trained to maximize dot product q ⋅ rel_embi if rel_embi is the embed-
ding of the right relation and minimize if rel_embi is the embedding of the wrong relation.

q ⋅ rel_embi is the confidence that rel_embi is the right relation. For example, for 
the question

(6) What periodical literature does Delta Air Lines use as a mouthpiece?
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with the corresponding SPARQL query

(7) SELECT DISTINCT ?obj WHERE  wd:Q188920 wdt:P2813 ?obj . ?obj wdt:P31 
wd:Q1002697

the model is trained to output maximal dot product for embeddings of relations P2813 
and P31.

For every question Qk in test set we extracted candidate relations Rk
1, ..., Rk

n for 
gold entities Ek

1, ..., Ek
m. Candidate relations are ranked with relation ranking model 

and we check if candidate relation with the maximum score is one of the gold rela-
tions Rk

1g, ..., Rk
mg. We measure the percent of questions in test set which have one of the 

gold relations ranked with the highest score (84% of questions) (Table 3). The model 
is more accurate if PyTorch-BigGraph embeddings of relations are replaced with aver-
age embeddings of relation title tokens (89%).

Table 3: Percent of questions in test set with one of 
the gold relations ranked with highest score

Relation embeddings used in the model % of questions

PyTorch-BigGraph 84
Word2Vec 89

Figure 3: Relation ranking network
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4.5. BERT for path ranking

Path ranking model is inspired by [8]. The input to the model is the following: 
the question q followed by [SEP] token and candidate path 

    Ci = {R1, ..., RL}, L ∈ {1, 2} (3)

from the set of candidate paths C1, ..., Cn. For example, one of the candidate paths for 
the question

(8) What is stable version of user interface of Amazon Kindle?

is {P1414, P348}, where the label of relation with identificator in Wikidata 
“P1414” is “GUI toolkit or framework” and the label of “P348” is “software version”. So, 
the input to BERT is the question q and relation titles “GUI toolkit or framework” and 
“software version” (Figure 4).

Figure 4: BERT input representation

Output representation of BERT [CLS] token is fed into a dense layer for binary 
classification into 2 classes: 1 if the candidate path is the gold path for the ques-
tion (positive sample) and 0 otherwise (negative sample). For training of the model 
we generated negative samples in the ratio of 20:1 to positive samples. The model 
achieves F1 of 87.2 on the test set.

4.6. Using regular expressions

Regular expressions are used in “statement_property” questions for extraction 
of dates and numerical values. “rank” questions require determination of the order 
of answer ranking (ascending or descending). For example, words “What is the high-
est”, “the biggest”, “the longest”, etc. point at ascending order (corresponding to “OR-
DER BY ASC(?obj)” in the SPARQL query) and “the smallest”, “the lowest”, etc. point 
at descending order (“ORDER BY DESC(?obj)”). Such keywords are extracted with 
regular expressions. In “boolean with filter” questions regular expressions are used for 
extraction of numerical values and comparison operators. For example, in the question

(9) Is the maximum wavelength of sensitivity of the human eye equal to 700?

the numerical value is “700” and “equal to” corresponds to “=”. So the SPARQL query 
for the question is

(10) ASK WHERE  wd:Q430024 wdt:P3737 ?obj filter(?obj = 700)
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Table 4: Question answering accuracy

Query template type Answering accuracy

statement_property 51.5
right_subgraph 33.3
center 78.1
Simple question left 67.3
Simple question right 68.7
string matching simple contains word 80.4
left-subgraph 27.9
boolean with filter 75.9
rank 48.5
string matching type + relation contains word 46.9
two intentions right subgraph 43.4
boolean double one_hop right subgraph 63.8
boolean one-hop right subgraph 59.1
Total 56.3

4.7. Results of the KBQA system on LC-QUAD2.0 dataset

Question answering accuracy for different types of questions is shown in Table 4. 
The answer is considered correct if the answer entities and numerical values or dates 
match with gold answers. The proposed KBQA system gives correct answers to almost 
one-half of double-fact questions with numerical values or dates (“statement_prop-
erty”) and questions with ranking of answers (“rank”). The system achieves high scores 
on single-fact questions (“center”, “boolean with filter”, “string matching simple contains 
word”). Two-hop questions (“left-subgraph” and “right-subgraph”) present difficulties 
to the system and are the subject of further research and improvement of the model.

4.8. Results of the KBQA system on LC-QUAD1.0 dataset

We divide questions in LC-QUAD1.0 into the following types: simple (one entity and 
one relation in the SPARQL query), simple with type (one entity, one relation and entity, 
which defines the type of answer entities), double (two entities and two relations), 2-hop 
(one entity and two relations) and boolean (the SPARQL query contains two entities, one 
relation and “ASK WHERE” keywords). BERT-based model is used for classification of the 
question by 5 query template types. Extraction of keywords, such as “how many”, “count”, 
etc. is used to define whether the question requires counting of number of answer entities.

The other details of the solution are the same as in KBQA system for LC-QUAD2.0, 
excepting additional tag “T-tag” in BERT sequence labeling model for extraction 
of substrings corresponding to the type of the entity.

Our model outperforms QAmp [15] and WQAqua [3]5. We did not compare our 
model with [8], because their work does not consider entity detection and linking steps.

5 http://lc-quad.sda.tech/lcquad1.0.html

http://lc-quad.sda.tech/lcquad1.0.html


Evseev D. A., Arkhipov M. Yu.   

12 

Table 5: Question answering accuracy

System Precision Recall F1 score

Our model 0.60 0.66 0.63
QAmp 0.25 0.50 0.33
WQAqua 0.22 0.38 0.28

5. Conclusion

In this work, we have described question answering system over Wikidata knowl-
edge base. The system translates a natural language question into a query in SPARQL 
language, execution of which gives an answer. The proposed KBQA system is capable 
of answering complex questions which require logical or comparative reasoning. The 
system is the first solution to LC-QUAD2.0 dataset, and we evaluated the performance 
of the system for different types of questions in LC-QUAD2.0.
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