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Probabilistic topic modeling is a tool for statistical text analysis that can give 
us information about the inner structure of a large corpus of documents. 
The most popular models—Probabilistic Latent Semantic Analysis and La-
tent Dirichlet Allocation—produce topics in a form of discrete distributions 
over the set of all words of the corpus. They build topics using an iterative 
algorithm that starts from some random initialization and optimizes a loss 
function. One of the main problems of topic modeling is sensitivity to ran-
dom initialization that means producing significantly different solutions from 
different initial points.  
 Several studies showed that side information about documents may im-
prove the overall quality of a topic model. In this paper, we consider the use 
of additional information in the context of the stability problem. We repre-
sent auxiliary information as an additional modality and use BigARTM library 
in order to perform experiments on several text collections. We show that 
using side information as an additional modality improves topics stability 
without significant quality loss of the model.
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1. Introduction

Topic modeling is a statistical method for analyzing a corpus of documents. The 
result of the modeling is a set of topics. Each topic is usually represented as a discrete 
distribution over the set of all words in the corpus. Some applications of topic model-
ing are information search [30], [31], [13], analysis of text documents [3], [25], [28], 
[29], images and video data [8], [11], [20], audio data [32], problems of bioinformat-
ics [23], [24].

The most popular algorithms for topic modeling solve the task of stochastic ma-
trix factorization i. e. approximate representation of a stochastic matrix F as a product 
of two stochastic matrices F ≈ ΦΘ. Matrix F is obtained from the collection of texts 
by assigning F[i, j] to the number of occurrences of i-th word in j-th document and 
column normalization. Matrix F ∈ ℝ|W|×|D| is usually called word-document matrix, 
where |W| is a number of words and |D| is a number of documents in the corpus. 
Matrices Φ ∈ ℝ|W|×|T| and Θ ∈ ℝ|T|×|D| are called word-topic matrix and topic-doc-
ument matrix, where |T| is a number of topics that is usually fixed before run of the 
algorithm. If we fix some stochastic matrix factorization F ≈ ΦΘ we may interpret 
distributions in columns of the matrix Φ as topics.

Two most popular approaches to the topic modeling are Probabilistic Latent Se-
mantic Analysis (PLSA) [10] and Latent Dirichlet Allocation (LDA) [3]. The basic hy-
pothesis of the PLSA model is the conditional independence hypothesis: the probabil-
ity of a word occurrence in a document is conditionally independent of the document 
given a topic. LDA is a Bayesian version of PLSA. The main assumption of the LDA 
model is that ϕwt and θtd are generated from the Dirichlet distribution. Additive Regu-
larization of Topic Models (ARTM) [25], [28], [14] extends the formulation of PLSA 
by adding different regularizers to the loss function. Some of them are described in 2.2.

Usually algorithms use random initialization and then converge to some local 
optimum. One of the main problems of topic modeling is instability i. e. convergence 
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to different solutions from different initializations. Mathematical origins of this issue 
were studied in [6], [9], [18], [5] where authors research the problem of uniqueness 
of Nonnegative Matrix Factorization (NMF). Another approach to the problem is cus-
tomization of basic algorithms to achieve better stability.

In the paper [2] the authors proposed ensemble methods and compared their per-
formance with standard LDA and NMF approaches. The idea of their K-Fold method 
is to train several base topic models, transform them into the intermediate represen-
tation and build the final topic model on the top of this representation. According 
to experiments performed on annotated text corpora, K-Fold ensemble strategy can 
produce more stable and accurate topic models.

The authors of [15] proposed a modification of the standard latent Dirichlet al-
location (LDA) model called granulated LDA (GLDA). The method is based on local 
density regularization that assigns the same topic with high probability to the words 
that meet together in the context. As for evaluation of model stability, the authors 
used Jaccard similarity and the number of stable topics based on Kullback-Leibler dis-
tance. The study shows that GLDA seems to reduce instability while yielding the same 
topic quality as classical topic models.

There are several studies [12], [33], [21] that show positive influence of addi-
tional information about documents in the collection on topic modeling performance. 
In this paper, we propose a method of increasing the stability that uses multimodal 
topic modeling. We use words as a first modality and different types of tags as ad-
ditional modalities. We show that even using a partially labeled corpus (5% or 20% 
of the whole corpus) may increase the stability of PLSA model without significant loss 
of model quality.

2. Background

2.1. PLSA

Let D be a collection of documents, and let W be its vocabulary. The idea of proba-
bilistic topic modeling is to describe how a collection of documents D is generated 
by a finite set of topics T. According to PLSA [10], the term distribution in each docu-
ment d ∈ D can be decomposed as a mixture of term probabilities for topics and topic 
probabilities for documents:

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (1)

where ϕwt = p(w|t) is the distribution of words in topics and θtd = p(t|d) is the dis-
tribution of topics in documents. The parameters ϕwt and θtd form stochastic matrices 
Φ and Θ. The problem of finding these matrices can be considered as an approximate 
matrix factorization task F ≈ ΦΘ, F = (p̂wd)|W|×|D|, where p̂wd = nwd/nd is a frequency 
estimate of the conditional probability p(w|d), nd is the length of the document d, nwd 
is the number of occurrences of the word w in the document d.

Parameters of the PLSA model are estimated via maximizing log-likelihood func-
tion with linear constraints:
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)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
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+
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∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)
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∑︁
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𝑛𝑛𝑤𝑤𝑡𝑡 log
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Φ,Θ
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Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (3)

The process of solving this problem consists of random initialization of the ma-
trix Φ and application of EM algorithm.

Most Bayesian approaches, such as LDA, use a prior Dirichlet distribution as the 
main regularizer, thus complicate the combination with other regularizers. ARTM 
is a modern extension of PLSA model proposed in [25] that is free from excess proba-
bilistic assumptions. It does not require parameters to be generated from Dirichlet 
distribution and allows to use different regularizers that may have no probabilistic 
interpretation at all. Suppose Ri(Φ, Θ), i = 1, 2, …, n are n regularizers that we want 
to maximize along with the likelihood L(Φ, Θ). In ARTM, we solve multi-criteria prob-
lem via maximization of the linear combination of L and Ri with some nonnegative 
regularization coefficients τi:

 
𝑅𝑅(Φ,Θ) =

∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (4)

Matrices Φ and Θ are estimated using EM algorithm, which can be described 
by two iteratively repeated steps.

At the E-step, we estimate the condition probability p(t|d, w) for all words in doc-
uments (d, w) using Bayes formula:

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (5)

These probabilities are used to calculate parameters nwt—the number of occur-
rences of the word w in the collection D with relation to the topic t and ntd—the num-
ber of words in the document d with relation to the topic t.

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (6)

At the M-step, we calculate parameters ϕwt and θtd as frequency estimates of the 
corresponding conditional probabilities:

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (7)

where the sign ∝ means that the distribution on the left is obtained after the nor-
malization of the right expression, and (x)+ = max{x, 0}. Thus, we can add different 
regularizers to set necessary constrains to the topic model. In this work, we will use 
the following regularizers: smoothing, sparsing, decorrelation and modality.
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2.2. Additive regularization of topic models

Smoothing regularizer. If we want ϕwt and θtd to be close to some discrete dis-
tributions βw and αd in terms of Kullback–Leibler divergence we can use a smoothing 
regularizer:

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (8)

where β0 and α0 are regularization coefficients. Hence, the M-th step of the algorithm 
gives equations:

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (9)

It is recommended to use a prior Dirichlet distributions or Bayesian inference 
for distributions βw and αt. The effect of this regularizer is an increase in small values 
of ϕwt and θtd due to a slight decrease in their large values. As a result, generated top-
ics may include general vocabulary words, stop words and rare words that are usually 
excluded from topics.

Sparsing regularizer. Usually we assume that each word and each document 
relate to a small number of topics. It means that matrices Φ and Θ should be sparse. 
We can achieve it using a sparsing regularizer. One can notice that sparsing is an in-
verse procedure to smoothing. Therefore, sparsing and smoothing differ only in the 
sign of parameters βw and αt.

Decorrelation regularizer. Decorrelation regularizer formalises the require-
ment that topics have to differ from each other. It can be satisfied via minimizing the 
sum of covariances between distributions ϕwt and ϕws for all pairs of topics t, s:

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11)

 (10)

where τ is a regularization coefficient. In this case, the formula for the regularized 
M-step takes the form:

 

𝑅𝑅(Φ,Θ) =
∑︁
𝑖𝑖

𝜏𝜏𝑖𝑖𝑅𝑅𝑖𝑖(Φ,Θ),

𝐿𝐿(Φ,Θ) +𝑅𝑅(Φ,Θ) → max
Φ,Θ

.
(4)

𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑) = 𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡∑︀
𝑠𝑠∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑠𝑠𝜃𝜃𝑠𝑠𝑡𝑡
. (5)

𝑛𝑛𝑤𝑤𝑤𝑤 =
∑︁
𝑡𝑡∈𝐷𝐷

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑), 𝑛𝑛𝑤𝑤𝑡𝑡 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡𝑝𝑝(𝑡𝑡|𝑑𝑑, 𝑑𝑑). (6)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝
(︂
𝑛𝑛𝑤𝑤𝑤𝑤 + 𝜑𝜑𝑤𝑤𝑤𝑤

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜑𝜑𝑤𝑤𝑤𝑤

)︂

+

, 𝜃𝜃𝑤𝑤𝑡𝑡 ∝
(︂
𝑛𝑛𝑤𝑤𝑡𝑡 + 𝜃𝜃𝑤𝑤𝑡𝑡

𝜕𝜕𝑅𝑅(Φ,Θ)

𝜕𝜕𝜃𝜃𝑤𝑤𝑡𝑡

)︂

+

, (7)

𝑅𝑅(Φ,Θ) = 𝛽𝛽0

∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑤𝑤∈𝑊𝑊

𝛽𝛽𝑤𝑤 ln𝜑𝜑𝑤𝑤𝑤𝑤 + 𝛼𝛼0

∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑇𝑇

𝛼𝛼𝑤𝑤 ln 𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

, (8)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 + 𝛽𝛽0𝛽𝛽𝑤𝑤)+ , 𝜃𝜃𝑤𝑤𝑡𝑡 ∝ (𝑛𝑛𝑤𝑤𝑡𝑡 + 𝛼𝛼0𝛼𝛼𝑤𝑤)+ . (9)

𝑝𝑝(𝑑𝑑|𝑑𝑑) =
∑︁
𝑤𝑤∈𝑇𝑇

𝑝𝑝(𝑑𝑑|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷,𝑑𝑑 ∈ 𝑊𝑊, (1)

𝐿𝐿(Φ,Θ) =
∑︁
𝑡𝑡∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛𝑤𝑤𝑡𝑡 log
∑︁
𝑤𝑤∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑤𝑤𝜃𝜃𝑤𝑤𝑡𝑡 → max
Φ,Θ

(2)

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤 = 1, 𝜑𝜑𝑤𝑤𝑤𝑤 ≥ 0;
∑︁
𝑤𝑤∈𝑇𝑇

𝜃𝜃𝑤𝑤𝑡𝑡 = 1, 𝜃𝜃𝑤𝑤𝑡𝑡 ≥ 0. (3)

𝑅𝑅(Φ,Θ) = −𝜏𝜏
∑︁
𝑤𝑤∈𝑇𝑇

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

∑︁
𝑤𝑤∈𝑊𝑊

𝜑𝜑𝑤𝑤𝑤𝑤𝜑𝜑𝑤𝑤𝑠𝑠 → max
Φ,Θ

, (10)

𝜑𝜑𝑤𝑤𝑤𝑤 ∝ (𝑛𝑛𝑤𝑤𝑤𝑤 − 𝜏𝜏𝜑𝜑𝑤𝑤𝑤𝑤

∑︁
𝑠𝑠∈𝑇𝑇∖𝑤𝑤

𝜑𝜑𝑤𝑤𝑠𝑠)+. (11) (11)

2.3. Multimodal topic modeling

Usually documents can be described not only by words but also by terms of other 
modalities [27]. For example, textual modalities are tags, n-grams, named entities and 
natural language words. The last one is what we used to deal with in topic model-
ing. Pictures and web-sites are non-textual modalities. We can consider documents 
as a set of tokens taken from different modalities. The diverse meta-data represented 
by modalities can be helpful for determining topics, and, vice-versa, topics may be used 
to predict missing meta-data.

Multimodal topic modeling occurred to be an effective approach for solving dif-
ferent problems. For example, for a given parallel collection of text translation we can 
model topics and then use them for the cross-language search. In this case, each lan-
guage is considered as a modality. Experiments showed that the combination of par-
allel documents and bilingual dictionaries improves the quality of cross-language 
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search in comparison with models using only bilingual dictionaries [7]. Also, mul-
timodal topic model can be applied for constructing recommendations [27]. In this 
study, the authors focused on the article recommendation in the online-platform, they 
used different modalities, such as words from text, user’s feedback, tags, authors and 
user-specified categories. According to the results, the combination of modalities rea-
sonably improves recommendation ranking.

Multimodal topic model and the regularized EM-algorithm for this case were 
firstly introduced in [27].

Let M be a set of modalities, and let Wm, m ∈ M be a vocabulary of modality 
m. These vocabularies do not intersect and can be united into the set 

∑︁
𝑚𝑚∈𝑀𝑀

∑︁
𝑑𝑑∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜏𝜏𝑚𝑚𝑛𝑛𝑤𝑤𝑑𝑑 ln
∑︁
𝑡𝑡∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑡𝑡𝜃𝜃𝑡𝑡𝑑𝑑 +𝑅𝑅(Φ,Θ) → max
Φ,Θ

, (13)

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜑𝜑𝑤𝑤𝑡𝑡 = 1, 𝜑𝜑𝑤𝑤𝑡𝑡 ≥ 0;
∑︁
𝑡𝑡∈𝑇𝑇

𝜃𝜃𝑡𝑡𝑑𝑑 = 1, 𝜃𝜃𝑡𝑡𝑑𝑑 ≥ 0. (14)

𝐶𝐶𝑡𝑡 =
2

𝑘𝑘(𝑘𝑘 − 1)

𝑘𝑘−1∑︁
𝑖𝑖=1

𝑘𝑘∑︁
𝑗𝑗=𝑖𝑖+1

(︂
log

𝑝𝑝(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗)

𝑝𝑝(𝑤𝑤𝑖𝑖)𝑝𝑝(𝑤𝑤𝑗𝑗)

)︂

+

, (15)

𝑝𝑝(𝑢𝑢, 𝑢𝑢) =
𝑛𝑛(𝑢𝑢, 𝑢𝑢)

𝑛𝑛
, 𝑝𝑝(𝑢𝑢) =

𝑛𝑛(𝑢𝑢)

𝑛𝑛
, (16)

𝑛𝑛(𝑢𝑢) =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛(𝑢𝑢, 𝑤𝑤), 𝑛𝑛 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛(𝑤𝑤). (17)

𝑛𝑛(𝑢𝑢, 𝑢𝑢) =

|𝐷𝐷|∑︁
𝑑𝑑=1

[∃ 𝑖𝑖, 𝑖𝑖 : 𝑤𝑤𝑖𝑖𝑑𝑑 = 𝑢𝑢, 𝑤𝑤𝑗𝑗𝑑𝑑 = 𝑢𝑢]. (18)

𝑆𝑆𝑆𝑆 (𝑅𝑅𝑖𝑖, 𝑅𝑅𝑗𝑗) =
|𝑅𝑅𝑖𝑖 ∩𝑅𝑅𝑗𝑗|

𝑡𝑡
, (19)

𝐴𝐴𝑆𝑆𝑆𝑆 =
2

𝑟𝑟(𝑟𝑟 − 1)

∑︁
𝑖𝑖≤𝑗𝑗,𝑖𝑖̸=𝑗𝑗

1

|𝑇𝑇 |

|𝑇𝑇 |∑︁
𝑠𝑠=1

𝑆𝑆𝑆𝑆 (𝑅𝑅𝑖𝑖𝑠𝑠, 𝑅𝑅𝑗𝑗𝑗𝑗(𝑠𝑠)), (20)

𝑆𝑆 = ⊔
𝑚𝑚∈𝑀𝑀

𝑆𝑆𝑚𝑚

𝑝𝑝(𝑤𝑤|𝑑𝑑) =
∑︁
𝑡𝑡∈𝑇𝑇

𝑝𝑝(𝑤𝑤|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷, 𝑤𝑤 ∈ 𝑆𝑆𝑚𝑚. (12)

  
containing terms of all modalities. A model of p(w|d) is introduced   
for each modality Wm, m ∈ M:

 

∑︁
𝑚𝑚∈𝑀𝑀

∑︁
𝑑𝑑∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜏𝜏𝑚𝑚𝑛𝑛𝑤𝑤𝑑𝑑 ln
∑︁
𝑡𝑡∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑡𝑡𝜃𝜃𝑡𝑡𝑑𝑑 +𝑅𝑅(Φ,Θ) → max
Φ,Θ

, (13)

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜑𝜑𝑤𝑤𝑡𝑡 = 1, 𝜑𝜑𝑤𝑤𝑡𝑡 ≥ 0;
∑︁
𝑡𝑡∈𝑇𝑇

𝜃𝜃𝑡𝑡𝑑𝑑 = 1, 𝜃𝜃𝑡𝑡𝑑𝑑 ≥ 0. (14)

𝐶𝐶𝑡𝑡 =
2

𝑘𝑘(𝑘𝑘 − 1)

𝑘𝑘−1∑︁
𝑖𝑖=1

𝑘𝑘∑︁
𝑗𝑗=𝑖𝑖+1

(︂
log

𝑝𝑝(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗)

𝑝𝑝(𝑤𝑤𝑖𝑖)𝑝𝑝(𝑤𝑤𝑗𝑗)

)︂

+

, (15)

𝑝𝑝(𝑢𝑢, 𝑢𝑢) =
𝑛𝑛(𝑢𝑢, 𝑢𝑢)

𝑛𝑛
, 𝑝𝑝(𝑢𝑢) =

𝑛𝑛(𝑢𝑢)

𝑛𝑛
, (16)

𝑛𝑛(𝑢𝑢) =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛(𝑢𝑢, 𝑤𝑤), 𝑛𝑛 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛(𝑤𝑤). (17)

𝑛𝑛(𝑢𝑢, 𝑢𝑢) =

|𝐷𝐷|∑︁
𝑑𝑑=1

[∃ 𝑖𝑖, 𝑖𝑖 : 𝑤𝑤𝑖𝑖𝑑𝑑 = 𝑢𝑢, 𝑤𝑤𝑗𝑗𝑑𝑑 = 𝑢𝑢]. (18)

𝑆𝑆𝑆𝑆 (𝑅𝑅𝑖𝑖, 𝑅𝑅𝑗𝑗) =
|𝑅𝑅𝑖𝑖 ∩𝑅𝑅𝑗𝑗|

𝑡𝑡
, (19)

𝐴𝐴𝑆𝑆𝑆𝑆 =
2

𝑟𝑟(𝑟𝑟 − 1)

∑︁
𝑖𝑖≤𝑗𝑗,𝑖𝑖̸=𝑗𝑗

1

|𝑇𝑇 |

|𝑇𝑇 |∑︁
𝑠𝑠=1

𝑆𝑆𝑆𝑆 (𝑅𝑅𝑖𝑖𝑠𝑠, 𝑅𝑅𝑗𝑗𝑗𝑗(𝑠𝑠)), (20)

𝑆𝑆 = ⊔
𝑚𝑚∈𝑀𝑀

𝑆𝑆𝑚𝑚

𝑝𝑝(𝑤𝑤|𝑑𝑑) =
∑︁
𝑡𝑡∈𝑇𝑇

𝑝𝑝(𝑤𝑤|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷, 𝑤𝑤 ∈ 𝑆𝑆𝑚𝑚. (12) (12)

The main concept of such modeling is that topics p(t|d) are the same for all mo-
dalities. As for the distribution of words in topics, the matrices Φm = (ϕwt)|Wm|×|T| are 
normalized separately and stacked vertically into the matrix Φ = (ϕwt)|W|×|T|.

If we consider the log-likelihood of each modality as a regularizer with coeffi-
cient τm, then the optimization problem has the following form:

 
∑︁
𝑚𝑚∈𝑀𝑀

∑︁
𝑑𝑑∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜏𝜏𝑚𝑚𝑛𝑛𝑤𝑤𝑑𝑑 ln
∑︁
𝑡𝑡∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑡𝑡𝜃𝜃𝑡𝑡𝑑𝑑 +𝑅𝑅(Φ,Θ) → max
Φ,Θ

, (13)

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜑𝜑𝑤𝑤𝑡𝑡 = 1, 𝜑𝜑𝑤𝑤𝑡𝑡 ≥ 0;
∑︁
𝑡𝑡∈𝑇𝑇

𝜃𝜃𝑡𝑡𝑑𝑑 = 1, 𝜃𝜃𝑡𝑡𝑑𝑑 ≥ 0. (14)

𝐶𝐶𝑡𝑡 =
2

𝑘𝑘(𝑘𝑘 − 1)

𝑘𝑘−1∑︁
𝑖𝑖=1

𝑘𝑘∑︁
𝑗𝑗=𝑖𝑖+1

(︂
log

𝑝𝑝(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗)

𝑝𝑝(𝑤𝑤𝑖𝑖)𝑝𝑝(𝑤𝑤𝑗𝑗)

)︂

+

, (15)

𝑝𝑝(𝑢𝑢, 𝑢𝑢) =
𝑛𝑛(𝑢𝑢, 𝑢𝑢)

𝑛𝑛
, 𝑝𝑝(𝑢𝑢) =

𝑛𝑛(𝑢𝑢)

𝑛𝑛
, (16)

𝑛𝑛(𝑢𝑢) =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛(𝑢𝑢, 𝑤𝑤), 𝑛𝑛 =
∑︁
𝑤𝑤∈𝑊𝑊

𝑛𝑛(𝑤𝑤). (17)

𝑛𝑛(𝑢𝑢, 𝑢𝑢) =

|𝐷𝐷|∑︁
𝑑𝑑=1

[∃ 𝑖𝑖, 𝑖𝑖 : 𝑤𝑤𝑖𝑖𝑑𝑑 = 𝑢𝑢, 𝑤𝑤𝑗𝑗𝑑𝑑 = 𝑢𝑢]. (18)

𝑆𝑆𝑆𝑆 (𝑅𝑅𝑖𝑖, 𝑅𝑅𝑗𝑗) =
|𝑅𝑅𝑖𝑖 ∩𝑅𝑅𝑗𝑗|

𝑡𝑡
, (19)

𝐴𝐴𝑆𝑆𝑆𝑆 =
2

𝑟𝑟(𝑟𝑟 − 1)

∑︁
𝑖𝑖≤𝑗𝑗,𝑖𝑖̸=𝑗𝑗

1

|𝑇𝑇 |

|𝑇𝑇 |∑︁
𝑠𝑠=1

𝑆𝑆𝑆𝑆 (𝑅𝑅𝑖𝑖𝑠𝑠, 𝑅𝑅𝑗𝑗𝑗𝑗(𝑠𝑠)), (20)

𝑆𝑆 = ⊔
𝑚𝑚∈𝑀𝑀

𝑆𝑆𝑚𝑚

𝑝𝑝(𝑤𝑤|𝑑𝑑) =
∑︁
𝑡𝑡∈𝑇𝑇

𝑝𝑝(𝑤𝑤|𝑡𝑡)𝑝𝑝(𝑡𝑡|𝑑𝑑), 𝑑𝑑 ∈ 𝐷𝐷, 𝑤𝑤 ∈ 𝑆𝑆𝑚𝑚. (12)

 (13)

 

∑︁
𝑚𝑚∈𝑀𝑀

∑︁
𝑑𝑑∈𝐷𝐷

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜏𝜏𝑚𝑚𝑛𝑛𝑤𝑤𝑑𝑑 ln
∑︁
𝑡𝑡∈𝑇𝑇

𝜑𝜑𝑤𝑤𝑡𝑡𝜃𝜃𝑡𝑡𝑑𝑑 +𝑅𝑅(Φ,Θ) → max
Φ,Θ

, (13)

∑︁
𝑤𝑤∈𝑊𝑊𝑚𝑚

𝜑𝜑𝑤𝑤𝑡𝑡 = 1, 𝜑𝜑𝑤𝑤𝑡𝑡 ≥ 0;
∑︁
𝑡𝑡∈𝑇𝑇

𝜃𝜃𝑡𝑡𝑑𝑑 = 1, 𝜃𝜃𝑡𝑡𝑑𝑑 ≥ 0. (14)

𝐶𝐶𝑡𝑡 =
2

𝑘𝑘(𝑘𝑘 − 1)

𝑘𝑘−1∑︁
𝑖𝑖=1

𝑘𝑘∑︁
𝑗𝑗=𝑖𝑖+1

(︂
log

𝑝𝑝(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗)

𝑝𝑝(𝑤𝑤𝑖𝑖)𝑝𝑝(𝑤𝑤𝑗𝑗)

)︂

+

, (15)

𝑝𝑝(𝑢𝑢, 𝑢𝑢) =
𝑛𝑛(𝑢𝑢, 𝑢𝑢)

𝑛𝑛
, 𝑝𝑝(𝑢𝑢) =
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3. Metrics

3.1. Quality of topic modeling

There are several metrics for measuring quality of topic model. Most previous 
works have exlusively focused on perplexity measure that describes the speed and 
level of convergence of the model. Perplexity can be represented as an inverse func-
tion of the likelihood of model parameters. One of the drawbacks of this metric is that 
it depends on the data size, therefore, it is hard to compare results of this measure 
obtained from models trained on different datasets.

Some recent studies [15], [1] evaluate their models by pairwise information 
based metric called coherence [22]. The practical meaning of coherence follows a sim-
ple idea: if we describe the topic as a set of words then these words are likely to meet 
together in the context. In addition, coherence seems to reflect well the interpretabil-
ity of topics [1]. Let k be an adjustable parameter meaning the number of top words 
in the topic t ∈ T, and let Wt = {w1, …, wk} be the corresponding set of top words. 
Then coherence formula for topic t is defined as follows:
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There are different types of calculating co-occurrencies n(u, v). In this paper, 
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We have described above how to compute coherency only for one topic. To obtain 
the coherence score for the topic model we simply average coherencies for all topics 
in the model. The higher coherency is, the better.

3.2. Stability of topic modeling

Let’s denote by {M1, M2, …, Mr} the set of topic models generated as a result 
of r runs of the algorithm on the same data. Assume that these models are similar 
if their topics are similar. To measure similarity between two topics represented 
by t top words, we propose to calculate the measure that we call Stable Words (SW), 
and describe it by the following formula:
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where π(s) is a topic of the model j matched to the topic s of the model i.
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4. Experiments

We performed experiments on five texts collections: 20NewsGroups, Reuters52, 
Cade, WebKB and Habr. 20NewsGroups [17] is a set of documents classified in 20 news-
groups. Reuters52 [19] is a collection of articles of 1987 year from Reuters that was 
manually classified by Reuters Ltd. The documents in WebKB1 are webpages collected 
by the World Wide Knowledge Base project of the CMU text learning group. Cade 
is a subset of web pages extracted from the CADÊ Web Directory which points to Brazil-
ian webpages labeled by human experts [4]. Habr is a dataset of articles from IT blog-
ging platform http://habrahabr.ru [27] with 5 modalities: text of the blogpost, author, 
users that leave comments at the blogpost, hub that is a site section, tags that are gen-
erated by the author. We used preprocessing from [4] for 20NewsGroups, Reuters52, 
Cade and WebKB datasets. All datasets were splited by train and test sets in a ratio 
of 60 to 40. Coherence was measured on hold-out test dataset.

We take text labels as an additional modality for 20NewsGroups, Reuters52, 
Cade and WebKB datasets. Each document contains one token of such a modality. 
We use different percentage of labeled documents: 5%, 20%, 50% and 100% in order 
to simulate partially labeled collection. We tested tags, habs modalities and the com-
bination of four modalities: authors, tags, hubs and users on Habr dataset.

All experiments were performed using an open source library for topic modeling 
BigARTM [26]. Models were trained until convergence on the train part of a dataset.

Each topic can be described as a set of the most frequent words of this topic. Sev-
eral descriptions in terms of top words for 20NewsGroups are presented in Table 1.

Table 1: Example of 5 topics on 20NewsGroups with number of topics |T|=10

% of  
labels Top 10 words

0 topic 1: game, team, plai, player, win, season, hockei, last, score, leagu
topic 2:   space, nasa, research, univers, gov, orbit, launch, program, 

center, system
topic 3: car, price, sale, bui, want, mail, sell, speed, apr, engin
topic 4: gun, state, israel, law, isra, govern, weapon, american, right, arab
topic 5:  kei, encrypt, chip, govern, secur, clipper, system, presid, public, work

50 topic 1: game, team, plai, player, win, season, hockei, last, leagu, score
topic 2: space, nasa, scsi, system, control, orbit, work, card, launch, data
topic 3: car, wire, ground, engin, power, work, water, back, want, light
topic 4: gun, state, israel, isra, bike, weapon, kill, apr, law, arab
topic 5:  kei, govern, encrypt, system, secur, chip, presid, clipper, public, 

program

1 http://www.cs.cmu.edu/~webkb/

http://www.cs.cmu.edu/~webkb/
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% of  
labels Top 10 words

100 topic 1: window, game, team, plai, win, hockei, file, player, season, nhl
topic 2:  space, nasa, work, presid, govern, orbit, state, launch, system, 

program
topic 3: car, engin, want, come, back, work, speed, price, start, auto
topic 4: gun, weapon, law, state, firearm, fire, govern, crime, control, arm
topic 5:  kei, armenian, encrypt, chip, govern, israel, secur, isra, system, 

turkish

To measure stability of the set of models generated over r = 100 runs, we used 
ASW (Eq. 21) with top t = 10 tokens for each topic. The estimation of the quality of the 
models was conducted using coherence score (Eq. 16) based on top t = 10 terms for 
each topic. We tried several set of hyperparameters for each model and present results 
with the best coherence. We performed several experiments with usual decorrelation, 
sparcing and smoothing regularizations.

Table 2: Topic stability and quality on 20NewsGroups 
with number of topics |T|=10

Modality Regularizer ASW Coherence

Words, 100% of labels Labels modality 0.86±0.01 0.16±0.01
Words, 50% of labels Labels modality 0.86±0.01 0.18±0.01
Words, 20% of labels Labels modality 0.83±0.01 0.21±0.01
Words, 5% of labels Labels modality 0.79±0.01 0.24±0.01
Words — 0.78±0.01 0.26±0.02
Words Decorrelation Φ 0.77±0.01 0.26±0.02
Words Sparcing Θ 0.75±0.01 0.28±0.02
Words Smoothing Φ 0.53±0.05 0.90±0.14
Words Sparcing Φ 0.53±0.01 0.40±0.02

Table 3: Topic stability and quality on 20NewsGroups 
with number of topics |T|=60

Modality Regularizer ASW Coherence

Words, 100% of labels Labels modality 0.76±0.00 0.35±0.01
Words, 50% of labels Labels modality 0.70±0.00 0.46±0.01
Words, 20% of labels Labels modality 0.63±0.01 0.55±0.01
Words, 5% of labels Labels modality 0.60±0.01 0.62±0.01
Words — 0.61±0.01 0.62±0.02
Words Decorrelation Φ 0.60±0.01 0.62±0.02
Words Sparcing Θ 0.12±0.00 0.10±0.02
Words Smoothing Φ 0.43±0.08 0.68±0.58
Words Sparcing Φ 0.25±0.00 0.74±0.01
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Table 4: Topic stability and quality on Reuters52 
with number of topics |T|=60

Modality Regularizer ASW Coherence

Words, 100% of labels Labels modality 0.65±0.01 0.72±0.01
Words, 50% of labels Labels modality 0.60±0.01 0.81±0.01
Words, 20% of labels Labels modality 0.56±0.00 0.87±0.01
Words, 5% of labels Labels modality 0.54±0.01 0.87±0.01
Words — 0.53±0.01 0.90±0.01
Words Decorrelation Φ 0.52±0.01 0.91±0.01
Words Sparcing Θ 0.08±0.00 0.07±0.01
Words Smoothing Φ 0.68±0.05 0.53±0.19
Words Sparcing Φ 0.20±0.00 0.83±0.02

Table 5: Topic stability and quality on Cade with number of topics |T|=10

Modality Regularizer ASW Coherence

Words, 100% of labels Labels modality 0.75±0.02 1.30±0.03
Words, 50% of labels Labels modality 0.72±0.02 1.27±0.03
Words, 20% of labels Labels modality 0.71±0.02 1.31±0.02
Words, 5% of labels Labels modality 0.69±0.02 1.32±0.03
Words — 0.69±0.02 1.33±0.02
Words Decorrelation Φ 0.69±0.02 1.33±0.02
Words Sparcing Θ 0.71±0.02 1.37±0.02
Words Smoothing Φ 0.45±0.02 1.57±0.11
Words Sparcing Φ 0.50±0.01 1.43±0.04

Table 6: Topic stability and quality on WebKB with number of topics |T|=10

Modality Regularizer ASW Coherence

Words, 100% of labels Labels modality 0.70±0.02 0.37±0.02
Words, 50% of labels Labels modality 0.65±0.02 0.43±0.02
Words, 20% of labels Labels modality 0.66±0.02 0.44±0.01
Words, 5% of labels Labels modality 0.64±0.02 0.47±0.01
Words — 0.64±0.02 0.49±0.02
Words Decorrelation Φ 0.64±0.02 0.49±0.02
Words Sparcing Θ 0.54±0.02 0.46±0.03
Words Smoothing Φ 0.68±0.04 0.31±0.04
Words Sparcing Φ 0.40±0.01 0.53±0.02
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Table 7: Topic stability and quality on Habr with number of topics |T|=60

Modality Regularizer ASW Coherence

Words, authors, users, tags, hubs Combination 
of modalities

0.73±0.00 0.40±0.01

Words, tags Tags modality 0.63±0.00 0.56±0.01
Words, hubs Hubs modality 0.54±0.01 0.73±0.02
Words Smoothing Φ 0.51±0.06 0.27±0.09
Words Decorrelation Φ 0.51±0.01 0.77±0.02
Words — 0.51±0.01 0.77±0.02

The results of topic modeling on 20NewsGroups, Reuters52, Cade and WebKB 
datasets (Tables 2–6) indicate that increase in the percentage of labels leads to sta-
bility growth. Moreover, models with regularizers, such as sparcing and smoothing, 
yield very low values of ASW compared to models with labels modality. Even 5% 
or 20% of labels may be enough to significantly increase model stability. However, 
we observe a drop in coherence score, especially in the models with high percentage 
of labels. Note, that models with labels modality trained on Reuters52 produce com-
parable and even higher coherence than models with other regularizers.

Experiments on Habr dataset show that the model combination of all five modali-
ties outperforms all other models in terms of stability measure (Table 7). We see that 
the use of one additional modality—hubs or tags—increases ASW score but results 
in a slight dercease of quality in comparison with the use of other regularizers.

Overall, we conclude that models with different modalities, such as labels and 
additional meta-data, produce more stable topics. At the same time, the model with 
labels modality may yield low coherence score if the percentage of labels is high.

5. Conclusion

Modern topic modeling approaches suffer from instability of their results even 
with fixed dataset and hyperparameters. We have demonstrated that stability of topic 
modeling algorithm may be improved with the help of side information. Evaluation 
on several text corpora shows that regularization of the PLSA model with additional 
modalities leads to less impact of random initialization and thus more stable modeling 
even if side information was provided only for some subset of documents.

While our experiments were conducted on five significantly different datasets, 
it is still an open question what combination of additional information is the best 
choice for improving stability with the smallest degradation of metrics of a model. 
The topic for further research is to find a combination of various regularizers with the 
best balance between modeling stability and the quality of topics.
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