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Headline generation is a task that has a good solution based on seq2seq 
models with an attention mechanism. However, it is still quite challenging 
to deal with morphologically rich languages, such as Russian, which have 
many word forms and therefore larger vocabularies. To deal with complex 
dependencies arising in such languages we propose several approaches 
based on using stems and grammemes. We applied these approaches 
to the pointer-generator network and took second place in the competition 
on headline generation held by the conference Dialogue-2019.
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Задача генерации заголовков имеет хорошее решение, которое базиру-
ется на использовании seq2seq моделей с механизмом внимания. Однако 
в случае морфологически богатых языков таким моделям приходится 
сталкиваться с более сложными зависимостями, которые могут прояв-
ляться в виде большого количества словоформ и их сочетаний друг с дру-
гом. Мы предлагаем несколько подходов, которые могут помочь автома-
тическим seq2seq генераторам заголовков учитывать зависимости таких 
языков, как русский. Мы также применили данные подходы к архитектуре 
генератора-указателя и заняли второе место на соревновании по генера-
ции заголовков, проведённом в рамках конференции Диалог-2019.

Ключевые слова: генерация заголовков, генератор-указатель, стем-
минг, флексия, лемма, граммема



Stepanov M. A.    

2 

1. Introduction

There are two main groups of text summarization approaches: abstractive and 
extractive. While extractive aproaches try to find the most informative subset of the 
text and copy it, abstraction-based systems generate words and phrases not from the 
source, but from the vocabulary, using learned natural language dependencies.

Automatic headline generation is a type of the summarization task. The aim 
of summarization is to create a shorter version of the text (in our case, the title), which 
contains the main idea of the given article. Working on task of generating headings 
has an advantage over the traditional summarization: it is much easier to find articles 
with titles than with annotations, which is very convenient for systems based on ma-
chine learning methods. There is almost an infinite supply of news articles in all major 
languages and almost all of them have a headline.

But, despite the existence of a huge amount of data, headline generation system 
still should be able to deal with dependencies of natural language, and the creation 
of this system is a challenging task. Due to this difficulty the vast majority of past 
decisions use extractive methods (see [1] or [2]), but the relatively recent success 
of sequence-to-sequence models [3] has made the abstractive approach viable (see [4] 
or [5]). Now it is possible to automatically read and generate text that has the struc-
ture similar to the headings written by human.

However, the benefits that seq2seq brought were not enough to create desirable 
headlines: these systems have problems such as the words repeating and the inability 
to use out-of-vocabulary (OOV) words of a source article. To enable OOV extraction, 
a pointer-generator model has been developed and introduced by See et al. [6]. This 
model is both extractive and abstractive: it is based on seq2seq, but can copy words 
from text too. Additionally, the coverage mechanism and the usage of a coverage loss 
(penalty for repeating words) during the training phase makes this model less prone 
to repetition. Due to these advantages, we chose the pointer-generator network with 
coverage mechanism as the baseline.

Though pointer-generator network can create human-like headlines of English 
news, it is quite difficult for the model to achieve the same success with, for exam-
ple, Russian articles. Even simple vocabulary of morphologically rich language can 
contain several million forms and variations. For a model it is harder to find suitable 
words in the space of possible variants expanded by word forms. With a larger vocabu-
lary it takes much more memory, computing power and time to teach the network 
to generate desirable headings.

In this paper we propose several approaches to deal with problems of morpholog-
ically rich languages: stem+flexion encoding and grammeme embeddings. We also 
present results of experiments that were made with RIA corpus1 (presented by [7]) 
and Lenta corpus2 during the competition track on the headlines generation held 
by the conference Dialogue-2019.

1 https://github.com/RossiyaSegodnya/ria_news_dataset

2 https://github.com/yutkin/Lenta.Ru-News-Dataset
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2. System description

2.1. Baseline model

Figure 1: Pointer-generator model scheme from [6]

The pointer-generator network is based on a sequence-to-sequence model with 
an attention mechanism (Figure 1). It uses the encoder to make encoder hidden states 
hi, which store the extracted information from the article. Article tokens wi are fed one-
by-one to the encoder’s embedding layer and the single-layer bidirectional LSTM. After 
that the model generates words of abstract step by step, applying the decoder (unidirec-
tional one-layer LSTM) to produce a decoder state st from an embedding of previously 
generated word yt−1 and so-called context vector (created by the attention mechanism) 
ht

*. Then the network gets the output vocabulary distribution (that show which word 
is most probable as next token of the headline) from the decoder state.

The attention mechanism is a modification of the seq2seq model which helps the 
decoder to produce the next word indicating which words of the source article are the 
most important at the step t. This information is contained in the attention distribu-
tion at calculated by this mechanism. Next, using the attention distribution as weights 
in the sum of encoder states hi, model creates context vector ht

*—the “second ingredi-
ent” of the output vocabulary distribution.

In addition to the generation of words from the fixed vocabulary this model 
is able to copy tokens from the source article. It is realized by calculating the genera-
tion probability pgen at each step t. Then the network use pgen as a soft switch to choose 
between generating a word using the vocabulary distribution, or copying a word from 
the text using at, which shows the most suitable tokens for extraction. This modifica-
tion makes model both extractive and abstractive and therefore more flexible for dif-
ferent kinds of situations.
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To cope with the output repetition problem, coverage mechanism is also involved 
in the title generation process. This modification retains all attention distributions 
produced by the model at each step t, and gives an additional loss if the model use 
similar at. If pointer-generator is trained with coverage mechanism, it is more liable 
to extract different words from the source and use different context vectors, which 
makes the model less repetitive3.

2.2. Stem+flexion encoding

In order to help model to work with larger vocabulary of morphologically rich 
languages, we experimented with two approaches. Both of them change the structure 
of input and output words to make the vocabulary sufficiently smaller with no drops 
in performance.

Figure 2: Example of stem+flexion encoding

The first approach is based on encoding each word as a pair of its stem and flex-
ion (or only stem if there is no flexion). To encode n words with m forms of each word 
model can work with a list of n stems and a fixed number of flexions instead of a vocab-
ulary with n * m words, which makes it easier for a network to find natural language 
dependencies in articles. The output of model consists of stems and flexions too and 
it can be easily decoded into words sequence.

In our experiments we use a Porter stemmer4 [8] for automatic encoding and 
a vocabulary of stems and flexions with 450 flexions5. Each flexion has a ‘+’ as a prefix 
to distinguish them from stems (Figure 2) and to restore headline from the output 
sequence of stems and flexions.

It is important to mention that we don’t make any changes in the model archi-
tecture in this part of experiments, only changes in input and output processing. But 
we also make attempts to use 3-layer encoder and decoder instead of single-layer 
to help the model to learn more sophisticated dependencies6.

3 read [6] to get more information about baseline model

4 https://medium.com/@eigenein/стеммер-портера-для-русского-языка-d41c38b2d340

5 https://colab.research.google.com/drive/1DEEwaFGQV6-SvoBuqalvxrSL3uLqI535

6 https://colab.research.google.com/drive/1U6BHW2TgfnjpxnoSdJzWLf0_23mVZFqF
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2.3. Grammeme embeddings

Figure 3: Pointer-generator model using grammemes

Another approach is based on the usage of lemmas and grammemes instead 
of words. We use a morphoparser (we choose pymorphy27) to divide each word into 
its lemma and a string consisting of a part of speech and all values of changeable 
grammatical values (Figure 3): For example, a noun ‘хакеров’ is encoded to lemma 
‘хакер’ and string ‘(NOUN plur gent)’. If a part of speech is not changeable (prepo-
sitions, conjunctions), then word gets string ‘(_)’. With this method, we created the 
vocabulary of lemmas and the vocabulary of strings with grammemes, which in our 
experiments has a size of 300.

We have changed the model architecture for these experiments: instead of the 
embedding layer for tokens of encoder’s and decoder’s input sequences we have made 
two independent layers for lemmas and grammeme strings. Network transforms article 
words to two sets of lemmas and grammemes and each of them passes through its own 
embedding layer. Then model concatenates two embeddings and gives the result to en-
coder and decoder. In addition to the vocabulary distribution (of lemmas) decoder gen-
erates distribution over the vocabulary of strings with grammemes mentioned above.

Next, in the training phase model calculates the loss. We have included addi-
tional cross entropy loss for the grammeme output sequence in order to help the net-
work to learn how to create right word forms. If the title generator works in the test 
phase, it tries to create headline with morphoparser by applying grammeme strings 
to lemmas (if it is impossible, the model gives lemma to output)8.

7 https://pymorphy2.readthedocs.io/en/latest/

8 https://colab.research.google.com/drive/1zIJ3Pk1oljRR8qTaZn25UkfDTeTKIL77
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3. Data and training

We consider two corpora: RIA and Lenta datasets. RIA dataset was provided 
by Russian news agency “Rossiya Segodnya” and used in the competition track of the 
conference Dialogue-20199. It contains 1,003,869 news articles of the time period 
from January 2010 to December 2014. We use this corpus as a training dataset which 
has an additional preprocessing such as cleaning from html-tags, lower-casing and 
tokenization. To speed up the learning of models, articles are also processed by the 
stem+flexion encoder and divided into lemmas and grammemes sequences by the 
morphoparser.

Lenta corpus has 739 new articles from 1999-08-30 to 2018-12-15. We chose 
10,000 random articles to form the test dataset. These texts were preprocessed in the 
same way as the train dataset.

4. Experiments

4.1. Models

In this work there were 4 different models which trained on Ria Corpus and were 
tested on Lenta Corpus. Here they are: baseline pointer-generator, pointer-gener-
ator using stems, pointer-generator using stems and 3-layer LSTM and pointer-
generator using grammeme embeddings.

4.2. Training

The models trained with the Adam optimizer using a scaled learning rate. All 
of them worked with vocabularies with 100,000 tokens and used token embeddings 
with the size of 128. Grammeme embeddings had the size of 32. Embedding layers 
were shared between encoder and decoder for all models. The size of the hidden vec-
tors of LSTM layers was equal to 256. In addition, the length of the input sequences 
was limited with 600 tokens for the model with stems and 400 for other models. Ref-
erence headlines were also truncated to 20 (for the model with stems) and 12 tokens 
(for other models). For headline generation, beam-search size was made equal to 4.

All models trained with batches of articles with the size of 32. Baseline pointer-
generator trained for 400,000 epochs, as models working with stems. Model with 
grammemes embeddings passed through 285,000 training epochs.

5. Results

We present our results on Lenta dataset in the Table 1. As it can be seen, all mod-
els with modifications surpassed vanilla pointer-generator on ROUGE-1, ROUGE-2 and 
ROUGE-L F1 scores. Model with 3-layer LSTM shows better results than the same 

9 https://vk.com/@headline_gen-announcement
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model but with single-layer encoder and decoder. Both of them had the same number 
of training epochs, so it seems, that more complex architecture helps title generator 
to understand natural language dependencies arising in this dataset better.

Network using grammeme embeddings has better R-1 and R-L scores than mod-
els with stems, but it loses in R-2 scores. But this model has single-layer LSTM, and 
if encoder and decoder would be multi-layer, the network with grammeme embed-
dings could outperform models with stems in all scores and with a large margin, what 
makes usage of grammemes more preferable than applying stem+flexion encoding.

Table 1: ROUGE-1,2,L F1 and recall scores, on Lenta corpus

Model R-1-f R-1-r R-2-f R-2-r R-L-f R-L-r

Pointer-generator (baseline) 21.36 22.27 8.69 8.70 19.25 20.79
Pointer-generator with stems 23.47 23.81 10.24 10.39 21.24 22.27
Pointer-generator with stems and 
3-Layer LSTM

25.16 25.82 11.32 11.63 22.78 24.13

Pointer-generator with grammeme 
embeddings

25.23 25.79 10.33 10.60 22.82 24.08

Using the model with stems, we took second place in headline generation contest 
held by Dialogue-2019. This model was evaluated on the private part of the RIA data-
set and had a score of 20.29 (mean of R-1-f, R-2-f, R-3-f). Unfortunately, 3-layer stem 
model and the model with grammeme embedding didn’t participate in competition 
because of lack of training time at the end of this event.

Additionally, we present headlines generated by all four models with two ran-
dom texts from the dataset (Table 2).

Table 2: Samples of headlines generated by models

Original text, truncated: дамаск , 11 мая . - риа новости . президент россии 
дмитрий медведев считает опасным дальнейший рост напряженности на ближ-
нем востоке . “ дальнейший разогрев ситуации на ближнем востоке чреват 
взрывом и катастрофой ” , - сказал медведев на пресс-конференции по итогам 
переговоров с президентом сирии башаром асадом . “ с моей стороны было 
специально подчеркнуто , что россия будет и дальше предпринимать все от нас 
зависящее для того , чтобы помогать восстановлению арабо-израильского мир-
ного процесса на основе международно-правовой базы , которая имеется ...
Original headline: медведев : “ разогрев ” ситуации на ближнем востоке чреват 
катастрофой
Headline by baseline pointer-generator: медведев считает опасным дальней-
ший рост напряженности на ближнем востоке
Headline by pointer-generator using stems: медведев : рост напряженности 
на ближнем востоке чреват взрывом
Headline by pointer-generator using stems and 3-layer LSTM: напряженность 
на ближнем востоке опасна , заявил медведев
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Headline by pointer-generator using grammeme embeddings: медведев считает 
опасным рост напряжённости на ближнем востоке
Original text, truncated: москва , 5 мая - риа новости . задымление произошло 
в субботу в вагоне электропоезда москва - фрязино ярославского направления 
московской железной дороги , из-за чего пассажиров пришлось пересадить в дру-
гую электричку , сейчас движение поездов восстановлено , сообщил риа новости 
руководитель службы корпоративных коммуникаций мжд владимир мягков . “ 
сегодня в районе платформы чкаловская в электропоезде номер 6707 в пятом ва-
гоне произошел нештатный разогрев буксы колесной пары , что дало небольшое 
задымление . в связи с этим электропоезд был остановлен ” , - сказал мягков ...
Original headline: в электричке в подмосковье произошло задымление вагона
Headline by baseline pointer-generator: задымление произошло в электричке 
на подмосковном железной дороге
Headline by pointer-generator using stems: задымление произошло в вагоне 
поезда москва - фрязино ярославского направления
Headline by pointer-generator using stems and 3-layer LSTM: задымление про-
изошло в вагоне электропоезда московской железной дороги
Headline by pointer-generator using grammeme embeddings: задымление про-
изошло в вагоне электрички мжд - фрязино

6. Conclusion

In this paper, we explore the application of two approaches to the pointer-gen-
erator network processing, such as usage of stems and grammemes, and with these 
described modifications model outperforms its own results on Russian news articles. 
The future work will focus on testing models on other datasets and experimenting 
with settings and subsystems of the model.
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