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Generic topics of large-scale document collections can often be divided into 
more specific subtopics. Topic hierarchies provide a model for such topic 
relation structure. These models can be especially useful for exploratory 
search systems. Various approaches to building hierarchical topic models 
have been proposed so far. However, there is no agreement on a standard 
approach, largely due to the lack of quality metrics to compare existing 
models. To bridge this gap we propose automated evaluation metrics which 
measure the quality of topic-subtopic relations (edges) of a topic hierarchy. 
We compare automated evaluations with human assessment to validate the 
proposed metrics. Finally, we show how the proposed metrics can be used 
to control and to improve the quality of existing hierarchical models.

Key words: topic modeling; topic hierarchies; quality metrics; coherence; 
word embeddings

mailto:anton.belyy@gmail.com
mailto:maria.selezniova@phystech.edu
mailto:ak.sholokhov@gmail.com
mailto:vokov@forecsys.ru


Belyy A. V., Seleznova M. S., Sholokhov A. K., Vorontsov K. V.﻿

2�

ОЦЕНКА И УЛУЧШЕНИЕ 
КАЧЕСТВА ИЕРАРХИЧЕСКИХ 
ТЕМАТИЧЕСКИХ МОДЕЛЕЙ

Белый А. В. (anton.belyy@gmail.com)
Университет ИТМО, Санкт-Петербург, Россия; 
Ф Точка Банк КИВИ Банк (АО), Екатеринбург, Россия

Селезнева М. С. (maria.selezniova@phystech.edu), 
Шолохов А. К. (ak.sholokhov@gmail.com), 
Воронцов К. В. (vokov@forecsys.ru)
Московский физико-технический институт 
(государственный университет), Москва, Россия

1.	 Introduction

Topic modeling is a branch of unsupervised machine learning widely used 
to summarize large unlabeled text corpora. A probabilistic topic model extracts latent 
probabilities of words appearing in each topic and topics appearing in each document, 
uncovering vectors of probability distributions that represent documents.

For the purposes of creating a representation of a text collection that helps users 
to navigate through the collection smoothly, topics can be arranged into a hierarchy. 
Generic topics of each parent level are thus divided into more specific subtopics of its 
child level. Such representation allows users to constrict the set of documents they are 
interested in gradually going down the topic hierarchy.

Various approaches to topic hierarchy learning have been proposed in recent 
years, such as LDA [1], hPAM [2] and hARTM [3]. However, there is still no agreement 
on the common approach. The main problem resides in difficulties of topic hierarchies 
comparison. Since there is no common topic hierarchy quality metrics, it is currently 
impossible to compare different approaches rigorously.

A quality metric for hierarchical topic models should measure both interpretability 
of topics on each hierarchy level and quality of pairs of topics that are linked with parent-
child relations in the hierarchy. There are common ways to measure topics quality widely 
used in the field, such as topic coherence [4]. Also, various topic quality metrics based 
on word embeddings have been proposed recently [5, 6]. However, to the best of our 
knowledge, “parent-child” relations quality has not been explored so far. In this paper, 
we propose metrics for quality of the hierarchy edges which represent such relations.

We use BigARTM—an open source library for topic modeling of large collec-
tions—in our experiments.
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2.	 Hierarchical Topic Models

Let 𝐷 denote a document collection. A vocabulary 𝑊 is a set of tokens (e.g. words, 
tags, links, etc.) that appear in the collection. We assume that the collection contains 
topics from a finite set 𝑇. Then, each document 𝑑 ∈ 𝐷 can be described with its prob-
ability distribution (𝑡∣𝑑) over the topics 𝑡 ∈ 𝑇 (i.e. 𝑝(𝑡∣𝑑) is a vector of probabilities for 
each topic to appear in the document 𝑑). On the other hand, each topic 𝑡 ∈ 𝑇 is de-
scribed with its probability distribution (𝑤∣𝑡) over the tokens 𝑤 ∈ 𝑊.

Given a collection 𝐷, we can extract estimators of a probability distribution 
𝑝(𝑤∣𝑑) of its tokens over its documents as 𝑛𝑑𝑤 / 𝑛𝑑, where 𝑛𝑑𝑤 is a number of times 
the token 𝑤 appears in the document 𝑑, 𝑛𝑑 = Σ𝑤∈𝑊 𝑛𝑑𝑤 is a number of words in 𝑑. How-
ever, we cannot directly estimate (𝑤∣𝑡) or 𝑝(𝑡∣𝑑) as 𝑡 is a latent (hidden) variable. 
As described, for example, in [12], extracting those distributions can be formulated 
as a matrix factorization problem 𝐹=𝛷𝛩, where 𝐹 = {𝑝(𝑤∣𝑑)}𝑊×𝐷 is the given matrix 
of 𝑝(𝑤∣𝑑) estimators, 𝛷 = {𝑝 (𝑤 ∣ 𝑡)}𝑊×𝑇 𝛩 = {𝑝(𝑡∣𝑑)}𝑇×𝐷 and are the matrices of model 
parameters that we are aimed to find. As shown in [12], the problem can be solved 
through EM-algorithm application.

A hierarchical topic model (HTM) comprises several flat (described above) 
topic models that form hierarchy levels. Each (𝑙+1)-th level has more topics than the 
𝑙-th one for the topics to get more specific down the hierarchy. HTM also includes edges 
that represent “parent-child” relations between the topics of the neighboring levels. 
As shown in [3], the problem of building such a hierarchy level by level can be solved 
through adding a new matrix 𝛹𝑙 = {𝑝(𝑡∣𝑎)}𝑇×𝐴 that represents probabilities for topics 
𝑡 ∈ 𝑇𝑙+1 (a set of topics of the (𝑙+1)-th level) to be subtopics of the previous level topics 
𝑎 ∈ 𝑇𝑙. That gives a matrix factorization problem 𝛷𝑙+1 = 𝛷𝑙 𝛹𝑙 for each level [3].

3.	 Motivation

Since its inception, topic modeling has been successfully applied for visualizing 
and navigating through large scientific corpora [8, 9, 10]. flexibility for such visualiza-
tions by allowing a user to go down a hierarchy to more specific topics or go up to more 
general ones. HTMs are particularly promising as a technology for creating an ex-
ploratory search engine [11], which allows exploring an area of knowledge related 
to a user’s query rather than looking for the exact query.

Our distant goal was to create such an engine. We have been working on a pro-
totype, which currently indexes Russian popular science websites and blogs and ag-
gregates their content into a hierarchical topic model. In our work, we have faced two 
major problems:

•	 heterogeneity of sources, which means that our sources usually differ in size 
and comprise different sets of topics,

•	 absence of evaluation metrics for HTMs for HTMs, which slows down model 
design as each HTM needs to be evaluated manually before it can be deployed 
into production environment.
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Fig. 1. Start screen of the exploratory search system Rysearch

In this paper we propose several metrics for automated model evaluation, thus 
tackling the second problem. We also share some insights on how these metrics can 
be used to improve quality of already built hierarchical model.

To facilitate comparison of metrics, we built two hierarchical models, concat 
and heterogeneous, which we use throughout the paper for explanations. The first 
one is intentionally worse in subjective quality than the latter: it has been trained 
on a simple concatenation of all the sources into a single one, disregarding the inequal-
ity of their sizes and structure. The latter model was built using a method we proposed 
that includes several stages:

1.	� Build a topic model of a ‘base’ collection—a collection that allows to build 
an interpretable model that includes all the topics we want to aggregate—
to create an initial estimate for the hierarchy.

2.	� Rank documents of a collection we want to add to the hierarchy according 
to their similarity to the base collection. The most similar documents should 
be ranked first.

3.	� Add the documents that appeared to be on the top of the ranking list to the 
base collection in a quantity not exceeding 10% of the base collection size. 
Build a topic model of the extended collection using the matrix 𝛷0

1 from the 
first stage (that contains estimates for the first level topics of the base collec-
tion) to initialize a new matrix 𝛷1 of the first hierarchy level.

4.	� Repeat the third step until all the documents from new collection are added 
to the model. Each time the collection from the previous iteration of the 
method is referred to as a base collection, so its size increases and we can 
add more documents on each step.

In our experiments we used Postnauka.ru as a base collection and Habrahabr.
ru as an added collection. Postnauka.ru contains all the major topics present in popu-
lar science content and its’ articles have manually adjusted tags that allow building 
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a model of high interpretability. On the other hand, Habrahabr.ru is focused on IT and 
contains a lot of irrelevant content such as news and advertisements. Also, Habrahabr.
ru collection is much bigger than Postnauka.ru (see the section 5.1 for the detailed 
datasets description). To rank the documents we used a regressor that measured how 
similar a given document is to typical popular science articles. As our ranking method 
is collection-specific we mention some other ideas about ways to perform ranking 
in the discussion section.

4.	 Proposed metrics for hierarchies

Proposed in [4], the topic coherence is a classical measure of a topic quality 
as well as flat topic models’ interpretability in general. In particular, one can estimate 
quality of a model as a whole by taking the average of topics’ coherences. However, 
a hierarchical topic model consists not only of its levels, but also of relations between 
topics from the neighboring levels, whereas the average coherence of the model’s lev-
els takes these dependencies completely out of consideration. Hence, the average co-
herence fractionally depicts the quality of a hierarchical model. This section is aimed 
to bridge the gap by proposing several quality measures for the “parent—child” rela-
tions between topics in a hierarchical model.

Linguistic similarity based metrics. We extend the classical flat coherence 
from [4] to hierarchical coherence to capture either syntagmatic or paradigmatic re-
latedness of parent and child topics’ top tokens [7]. Let us define 𝑤(𝑡) as the 𝑖-th top 
token of some topic 𝑡. Then 𝑣(𝑡) will be the vector corresponding to this top token 
in some Vector Space Model (VSM). In our experiments we used the pre-trained VSM 
RusVectōrēs [13], which was trained on Russian National Corpus and Russian Wiki-
pedia (600 million tokens, resulting in 392,000 unique word embeddings). 𝐷(𝑤1,𝑤2) 
is a number of documents in some corpus (in our experiments we use Postnauka cor-
pus to calculate cooccurrences, although in general it is more preferable to use big 
external corpora such as Wikipedia or Twitter) where words 𝑤1 and 𝑤2 have occurred 
together at least once. 𝐷(𝑤) is a document frequency of word 𝑤 calculated for the 
same corpus. Then we define our metrics as:

•	 EmbedSim:		

         

1
𝐶𝐶
�� < 𝑣𝑣𝑖𝑖(𝑎𝑎),𝑣𝑣𝑗𝑗(𝑡𝑡) > [𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

1
𝐶𝐶
��𝑙𝑙𝑙𝑙

𝐷𝐷(𝑤𝑤𝑖𝑖(𝑎𝑎),𝑤𝑤𝑗𝑗(𝑡𝑡))  +  𝜀𝜀
𝐷𝐷(𝑤𝑤𝑗𝑗(𝑡𝑡))

[𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

𝐶𝐶 = ���𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

 

1 −
1
√2

||�𝑝𝑝(𝑤𝑤|𝑡𝑡) −�𝑝𝑝(𝑤𝑤|𝑎𝑎)||2 

−𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑤𝑤|𝑎𝑎)||𝑝𝑝(𝑤𝑤|𝑡𝑡)) 

𝜓𝜓𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  

𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑥𝑥𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡

 

•	 CoocSim:		

         

1
𝐶𝐶
�� < 𝑣𝑣𝑖𝑖(𝑎𝑎),𝑣𝑣𝑗𝑗(𝑡𝑡) > [𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

1
𝐶𝐶
��𝑙𝑙𝑙𝑙

𝐷𝐷(𝑤𝑤𝑖𝑖(𝑎𝑎),𝑤𝑤𝑗𝑗(𝑡𝑡))  +  𝜀𝜀
𝐷𝐷(𝑤𝑤𝑗𝑗(𝑡𝑡))

[𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

𝐶𝐶 = ���𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

 

1 −
1
√2

||�𝑝𝑝(𝑤𝑤|𝑡𝑡) −�𝑝𝑝(𝑤𝑤|𝑎𝑎)||2 

−𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑤𝑤|𝑎𝑎)||𝑝𝑝(𝑤𝑤|𝑡𝑡)) 

𝜓𝜓𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  

𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑥𝑥𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡

 

	 where 		

         

1
𝐶𝐶
�� < 𝑣𝑣𝑖𝑖(𝑎𝑎),𝑣𝑣𝑗𝑗(𝑡𝑡) > [𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

1
𝐶𝐶
��𝑙𝑙𝑙𝑙

𝐷𝐷(𝑤𝑤𝑖𝑖(𝑎𝑎),𝑤𝑤𝑗𝑗(𝑡𝑡))  +  𝜀𝜀
𝐷𝐷(𝑤𝑤𝑗𝑗(𝑡𝑡))

[𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

𝐶𝐶 = ���𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

 

1 −
1
√2

||�𝑝𝑝(𝑤𝑤|𝑡𝑡) −�𝑝𝑝(𝑤𝑤|𝑎𝑎)||2 

−𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑤𝑤|𝑎𝑎)||𝑝𝑝(𝑤𝑤|𝑡𝑡)) 

𝜓𝜓𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  

𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑥𝑥𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡

 

is a number of word pairs excluding pairs of identical words. We denote the topic 
of the parent level as 𝑡 and the topic of the child level as a (“ancestor”) here, 𝑛 is the 
number of considered top tokens for each topic.
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Probabilistic similarity based metrics. We can compare parent and child topics 
as probability distributions. Two standard similarity measures for distributions 𝑃 and 𝑄 
are Hellinger distance and Kullback-Leibler divergence. The first one is a bounded met-
ric and can be interpreted as distance between two topics in some space. The second 
is an unbounded asymmetric measure and can be interpreted as “how much informa-
tion will be lost if we substitute parent topic 𝑃 with some child topic 𝑄”.

•	 HellingerSim:	

         

1
𝐶𝐶
�� < 𝑣𝑣𝑖𝑖(𝑎𝑎),𝑣𝑣𝑗𝑗(𝑡𝑡) > [𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

1
𝐶𝐶
��𝑙𝑙𝑙𝑙

𝐷𝐷(𝑤𝑤𝑖𝑖(𝑎𝑎),𝑤𝑤𝑗𝑗(𝑡𝑡))  +  𝜀𝜀
𝐷𝐷(𝑤𝑤𝑗𝑗(𝑡𝑡))

[𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

𝐶𝐶 = ���𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

 

1 −
1
√2

||�𝑝𝑝(𝑤𝑤|𝑡𝑡) −�𝑝𝑝(𝑤𝑤|𝑎𝑎)||2 

−𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑤𝑤|𝑎𝑎)||𝑝𝑝(𝑤𝑤|𝑡𝑡)) 

𝜓𝜓𝑡𝑡𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  

𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚𝑥𝑥𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡 −  𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡𝜓𝜓𝑡𝑡𝑡𝑡

 

•	 KLSim:		

         

1
𝐶𝐶
�� < 𝑣𝑣𝑖𝑖(𝑎𝑎),𝑣𝑣𝑗𝑗(𝑡𝑡) > [𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

1
𝐶𝐶
��𝑙𝑙𝑙𝑙

𝐷𝐷(𝑤𝑤𝑖𝑖(𝑎𝑎),𝑤𝑤𝑗𝑗(𝑡𝑡))  +  𝜀𝜀
𝐷𝐷(𝑤𝑤𝑗𝑗(𝑡𝑡))

[𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)]
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

𝐶𝐶 = ���𝑤𝑤𝑖𝑖(𝑎𝑎) ≠ 𝑤𝑤𝑗𝑗(𝑡𝑡)�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 

 

1 −
1
√2

||�𝑝𝑝(𝑤𝑤|𝑡𝑡) −�𝑝𝑝(𝑤𝑤|𝑎𝑎)||2 
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To understand how these metrics work, let us consider an example. We are 
given 6 “parent-child” pairs of topics that were assessed by humans. Three of them 
are labeled as ‘good’ (there is a semantic similarity between parent and child), other 
three are labeled as ‘bad’ (little or no similarity). On the fig. 2 one can see these pairs 
on the right, along with their scores given by the EmbedSim metric. The higher the 
score, the more confident the metric is. On the left there is a distribution of all the 
edges from an assessment task described in the following section. Y-coordinates 
of points are assigned according to metric score, and colors are set by the assessment 
experts. One can see that there are much more pairs marked as ‘bad’ than the ones 
marked as ‘good’. As we expect the hierarchy to be sparse (each parent topic has only 
a few suitable subtopics), this observation corresponds to our expectations. It is also 
clear from the figure that ‘bad’ pairs have lower average metric score than the ‘good’ 
ones. It means that the EmbedSim metric scores ‘good’ pairs with higher values and, 
therefore, correlates with the assessors opinion.

Fig. 2. Examples of topic-subtopic pairs from the assessment task 
(section 5) scored with the EmbedSim metric as hierarchy edges. Each 
topic or subtopic is represented by its 5 top tokens. The column on the 

left shows all the assessed pairs as dots on their EmbedSim score scale
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5.	 Expert opinions of edges quality

5.1.	Datasets and models

To construct “parent-child” topic pairs for human annotation, we trained three 
two-level hierarchical topic models on three datasets:

•	 Postnauka.ru, a popular science website with edited articles on a wide spectrum 
of topics, focusing on humanities,

•	 Habrahabr.ru and Geektimes.ru, social blogging platforms specializing 
in Computer science, engineering and IT entrepreneurship,

•	 Elementy.ru, a popular science website with a particular focus on life sciences.

Table 1. Datasets’ descriptions

Dataset
Number 
of documents

Unique 
words

Unique 
tags

Parent 
topics

Child 
topics

Postnauka 2,976 43,196 1,799 20 58
Habrahabr 81,076 588,400 77,102 6 15
Elementy 2,017 30,352 - 9 25

The collections consist of text documents. Dictionary sizes for each collection are 
listed in the “Unique words” column. Postnauka and Habrahabr collections are also 
manually tagged by their authors or editors (each article can have multiple tags), the 
numbers of tags are listed in the “Unique tags” column.

5.2.	Task statement

The following question was asked for experts: “given two pairs of topics, 𝑇1 and 𝑇2, 
decide whether one is a subtopic of another”. Possible answers were: “𝑇1 is a subtopic 
of 𝑇2”, “𝑇2 is a subtopic of 𝑇1” and “These topics are not related”. Topic 𝑡 was denoted 
by 10 top words from its probability distribution (𝑤∣𝑡).

After the experiment was finished, the first two answers were grouped to denote 
a single answer “These topics are somehow related” as it was often difficult for asses-
sors to distinguish between a parent and a child given their top words.

5.3.	Quality control

To ensure quality control, only those workers who completed training were al-
lowed to enter the assessment task. Experts could have skipped some tasks if they 
were not sure, but those who were skipping tasks too often were banned from partici-
pating for a day.
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5.4.	Results

Overall, 68 trusted workers participated in our study, each contributed around 
100 assessed topical pairs. Assessment of one pair of topics, given their 10 top words, 
took around 5 seconds for each participants on average. Each topic pair was evalu-
ated by at least five different experts, which gave us 6750 expert annotations for 1350 
unique pairs (edges).

Our participants were mainly Russian and Ukrainian nationals, with age varying 
from 21 to 64 years.

Table 2. Inter-assessor agreement

Agreed assessors Edge count Edge percentage

3 374 27.7%
4 468 34.7%
5 508 37.6%

For each pair of topics, we calculate how many assessors made the same verdict 
(that the topics from the pair are related or that they are not). For 5 assessors per pair, 
there is always a majority decision, but it can be reached by either 3, 4, or 5 assessors. 
In the second and the third column we show the quantity and the percentage of the 
edges with the number of agreed assessors from the first column.

6.	 Comparison of metrics values and expert annotations

If many people think that there is a “topic—subtopic” relation between two par-
ticular topics in a model, a good metric should give a high score for such pair of topics. 
In this case we say that metric “approximates assessors opinion”. Moreover, we want 
that metric to keep an order on the model edges consistent with this statement: the 
more people agreed that the relation presents—the higher the metric score should be.

In order to prove that the proposed metric holds this constraint, consider the 
following classification problem. Let us call “the assessors’ judgment” the fact that 
4 or 5 assessors agreed on the same verdict (that an edge exists or does not exist 
in a hierarchy). If it holds, then assessors’ judgment on this edge is equal to 1, and 
−1 otherwise. Let the edges of a hierarchical model be the objects: the positive and 
negative classes consist of the edges with a positive and a negative assessors’ opinion 
respectively. Let the classifier based on the metric be the following:

(𝑡1,𝑡2)=sign(𝜌(𝑡1,𝑡2)−𝑤)

where 𝑡1 and 𝑡2 are the topics from parent and child level of the model respectively, 
𝜌 is one of the proposed metrics and w is a margin of the classifier. Having it written 
in this form, we can calculate ROC AUC for each classifier and estimate the quality 
of each metric: better approximators are expected to have better scores.
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Table 3. ROC AUC scores for the proposed metrics.

Metric Score

EmbedSim 0.878
CoocSim 0.815
KLSim 0.790
HellingerSim 0.766

The table 3 presents ROC AUC score for each classifier. One can see that the best 
classification quality was demonstrated by the classifier based on the Embeddings 
metric (AUC = 0.878). The other metrics demonstrated moderate yet acceptable con-
sistency with the assessors’ opinion: AUC values lied evenly above 0.75. For better un-
derstanding of this result one can see the fig. 3. For each graph the red line is a density 
distribution of the metric value for bad edges, and the green one is the same for good 
edges. The better some vertical line divides bad edges from good ones—the better the 
metric is. In further experiments we use the EmbedSim metric, as this metrics demon-
strated the best consistency with assessors’ judgment.

Fig. 3. Distribution of scores for ’bad’ and ’good’ topical edges

As the EmbedSim metric gives the highest AUC score we use it in all the following 
experiments.

7.	 Quality of hierarchical models

The goal now is to combine the edges metric into some construction, which 
would be a representative quality measure for a hierarchy as a whole.

Normalization: Hereafter we work with a normalized matrix 𝛹𝑛𝑜𝑟𝑚 as the 
following:
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It allows to apply shared topic-agnostic threshold and to rank all values of 𝛹 ma-
trix on the same scale.

7.1.	 Averaging quality

In the spirit of [4] where the average topics coherence was used as a model qual-
ity measure, let us consider the average edge quality as quality measure for our hier-
archy. The particular hierarchy configuration depends on the chosen threshold for 
𝛹𝑛𝑜𝑟𝑚, which determines what probability (𝑡∣𝑎) is sufficient to include an edge con-
necting t and a into the hierarchy. Therefore different thresholds lead to different 
values of a quality measure. However, for bad models this value seems to be almost 
evenly lower than for good ones. The fig. 4 illustrates this effect: one can see that 
the heterogeneous model had a higher score than the less elaborated concat model 
no matter what threshold was set. Hence it was enough to set the same threshold for 
all models if one wants to compare them with our measure. However, this measure 
lacks the interpretability of its value (Y-coordinate of curves on the figure).

Fig. 4. Averaging quality metrics for EmbedSim

7.2.	Ranking quality

Given a collection 𝐷, we can extract estimators of a probability distribution 
𝑝(𝑤∣𝑑) of its tokens over its documents as 𝑛𝑑𝑤/𝑛𝑑, where 𝑛𝑑𝑤 is a number of times the 
token 𝑤 appears in the document 𝑑, 𝑛𝑑 = Σ𝑤∈𝑊𝑛𝑑𝑤 is a number of words in 𝑑. How-
ever, we cannot directly estimate (𝑤∣𝑡) or 𝑝(𝑡∣𝑑) as 𝑡 is a latent (hidden) variable. 
As described, for example, in [12], extracting those distributions can be formulated 
as a matrix factorization problem 𝐹=𝛷𝛩, where 𝐹=[𝑝(𝑤∣𝑑)]𝑊×𝐷 is the given matrix 
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of 𝑝(𝑤∣𝑑) estimators, 𝛷=[𝑝(𝑤∣𝑡)]𝑊×𝑇 𝛩=[𝑝(𝑡∣𝑑)]𝑇×𝐷 and are the matrices of model 
parameters that we are aimed to find. As shown in [12], the problem can be solved 
through EM-algorithm application.

Another approach to form a quality measure with an interpretable value 
is to consider the process of establishing a hierarchy as a ranking process. Consider 
that we have built a model i.e. we have matrices 𝛹𝑛𝑜𝑟𝑚, 𝛩 and 𝛷 for each level. It would 
be natural to accept only the most meaningful edges according to a human’s point 
of view. As our edge metrics turned out to be good approximators of the assessors’ 
judgment, we can choose only k edges with the top scores of some fixed metrics. If our 
model is “good”, then top-k scored edges (let us call them “the request”) should match 
with top-k maximal elements of the 𝛹𝑛𝑜𝑟𝑚 matrix (let us call them “the response”). The 
difference between the request and the response for each k was measured by common 
ranking metrics, such as:

•	 Average Precision (AP@k)—described in [14].
•	 Inverse Defect Pairs (Inverse DP@k)—the inverse value of the number of pairs 

that appear in the wrong order (i.e. are reversed) in the response.
•	 Normalized Discounted Cumulative Gain (nDCG@k)—described in [14].

Fig. 5. The ranking quality metrics for the EmbedSim edge metric. The 
considered models (concat and heterogeneous) are described in section 3

The fig. 5 shows that in all cases the ranking quality scores are higher for better 
model. One may interpret this result as the following: if a model is “good”, than its 
top-k edges should match the metric’s top-k edges precisely enough, no matter what 
k was set. According to the fig. 4 it holds for all ranking metrics, but the biggest gap 
was given by the Average Precision. Hence, if one wants to compare quality of two dif-
ferent hierarchies, the advice may be the following:

•	 Take Embedding similarity (EmbedSim) as the edge metric and plot the Average 
Precision@k graph. The better model will be the one having better score(s) at the 
desirable value(s) of k.

There is also a notable advantage of ranking approach over the averaging ap-
proach: it allows to choose the optimal number of edges in the model, which we will 
discuss in the following section.
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8.	 Applications

Using the proposed edge metrics we managed to improve the quality of models 
significantly in our own project mentioned in section 3. The following chapter briefly 
describes our experience and results.

8.1.	Validating the model in an automated way

Let us suppose that we have a service that continuously aggregates information 
from various sources into one heterogeneous HTM. It implies that the model mutates 
over time: new topics and edges appear as the new content arrives. If one does not con-
trol the process, the model may degrade over time. To avoid this, we have been using 
a “good edges to all edges” ratio with automatic notification about model’s degrada-
tion, so that there is no need in human assessment of the model. The fig. 6 shows some 
examples of “good”, “moderate” and “bad” edges according to the EmbedSim metric.

Fig. 6. Examples of “good” (green), “bad” (red) and “moderate” 
(pink) edges according to the EmbedSim metric. Each 

topic or subtopic is represented by its 5 top-tokens.

8.2.	Improving the quality of already built models

Another example was an improvement of a previously built model which was too 
large to be rebuild from scratch. We can’t usually change the topics in such a situation, 
but we can change the hierarchical relations between them.
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Fig. 7. Hierarchical relations improvement with 
ranking approach edge selection

The fig. 7 (the left side) demonstrates a subset of the parent topics of the con-
cat model with their child topics. According to our method, we plotted an inverse 
DP@k graph for the EmbedSim metric of the edges of this model (see section 7.2), 
found its maximum (in our case it was at k = 100) and built a new hierarchy that 
contained only the top-k of the edges. The fig. 7 (the right side) demonstrates how 
quality of the same model increased without rebuilding the model itself. One can see 
that the new hierarchy looks more consistent and elaborated in comparison with the 
previous one.

9.	 Results

In this article we proposed several automated metrics for “parent-child” relations 
of a topic hierarchy. We showed that the EmbedSim metric based on word embeddings 
reaches significant consistency with the assessors’ judgment on whether the connec-
tion between topics exists or not. Other metrics demonstrated moderate yet accept-
able consistency and can also be used in conjunction with EmbedSim.

We also proposed two approaches for measuring quality of a hierarchy as a whole. 
Using metrics of edges’ quality we examined averaging and ranking approach to build 
an aggregated quality measure, and showed that better models reach higher scores 
in comparison with less elaborated models.

Finally, we demonstrated several applications of the metrics for models’ hier-
archical relations improvement. For instance, the proposed ranking approach can 
be used for choosing the optimal set of edges to be included into a hierarchy, as shown 
in the section 8.

Our work extends existing quality metrics from flat topic models to hierarchical 
ones which, to the best of our knowledge, hasn’t been done before.
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10.	 Discussion

One of the possible extensions of this work is to integrate quality evaluation into 
the process of building hierarchical models. It can be done in various ways. One op-
tion is to build an ARTM regularizer [12], hence the process of constructing a model 
will try to maximize a certain quality measure during training.

In the section 3 we mention that we used a collection-specific regressor to rank 
new documents before adding them to the base collection. To make the method ap-
plicable to an arbitrary collection we need to replace the regressor with some general 
approach learned automatically directly from the given collections. One of the pos-
sible solutions is, for example, ranking new documents according to their average tf-
idf distance to the base collection. Another possible approach is finding p(t|d) vectors 
of the new documents in the model defined by 𝛷0

1 matrix from the previous method it-
eration (i.e. the base collection 𝛷1) and, then, measuring their KL divergence with the 
uniform distribution. The lower its KL divergence is the less the distribution of a given 
new document over the old topics resembles the uniform distribution. If the distribu-
tion is close to uniform it means that the document doesn’t fit well into the existing 
model and should be ranked lower and vice versa.
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