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Most of the distributional word embedding models nowadays learn semantic 
representations of words ignoring their morphological structure. This be-
came a limitation, especially for languages with complex morphology: their 
vocabularies are quite large, and most words are infrequent which results 
in models being unable to learn good semantic representations for such 
words. In this paper, we compare two approaches aimed at including sub-
word information for Russian using distributional word embedding models 
trained on the Russian National Corpus. We evaluate these approaches 
on the newly created rare and multimorphemic word similarity dataset, which 
itself is another contribution of ours. Overall, we show the benefits of using 
subword informations for learning better semantic representations of words.
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1.	 Introduction

The first attempts to derive representations of word meaning were based on di-
rectly extracting co-occurrence statistics from large corpora [Deerwester et al., 1990]: 
each word is represented with a vector that consists of frequencies for this word oc-
curring together with other words. The assumption is that such vectors for semanti-
cally similar words are close to each other (by the cosine similarity metric) because the 
words are used in similar contexts. This group of methods is called count-based since 
they calculate the co-occurrences of each word in the corpus with all other words di-
rectly. However, it is prediction-based methods that have attracted most attention in the 
field of distributional semantics in the recent years: they approximate co-occurrence 
statistics without counting it directly, using machine learning, particularly shallow 
neural networks. Two well-known state-of-the-art approaches in this group are Con-
tinuous Bag-of-Words (CBOW) and SkipGram introduced in [Mikolov et al., 2013a].

Currently most of the distributional word embedding models (“embedding” 
stands for a mathematical structure that is used to embed word meaning into a dense 
vector) learn semantic representations of words ignoring their morphological struc-
ture. This became a limitation, especially for languages with complex morphology: 
considering the facts that their vocabularies are large and most words are infrequent, 
it is quite probable that a model trained for the one of such languages either will learn 
distorted semantic representations for these words or will not be able to learn them 
at all [Bojanowski et al., 2017].

In this paper, we compare two approaches towards including subword informa-
tion for Russian using distributional word embedding models trained on the Russian 
National Corpus1: the first approach is based on two models trained using Continuous 
SkipGram algorithm (the main model does not employ any subword information and 
the additional model extends the main one by representing meanings of out-of-vocab-
ulary words through combining representations of morphemes of such words) and the 
second approach that uses a model trained with fastText algorithm [Bojanowski et al., 
2017]. We evaluate the approaches on a rare and multimorphemic word similarity 
dataset, which we compiled. This is another contribution of our work.

The paper is structured as follows. In Section 2 we put our research in the context 
of the previous work. Section 3 introduces the corpora, the methods used to train distri-
butional word embedding models and the models to segment words in morphs. In Sec-
tion 4 we describe the process of creation of our word similarity dataset. Section 5 pres-
ents the evaluation results and the analysis of mistakes, and in Section 6 we conclude.

2.	 Related work

In recent years, the works that proposed methods for the usage of subword infor-
mation in distributional word embedding models (further DWEM or DWEMs) were 
based mostly on the English [Luong et al., 2013]; [Xu et al., 2017]; [Bojanowski et al., 
2017] and German [Padó et al., 2016]; [Singh et al., 2016] material.

1	 http://www.ruscorpora.ru/en
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One of the first attempts to employ subword information was made in [Luong 
et al., 2013]; [Padó et al., 2016]: the key idea was to represent the meaning of an out-
of-vocabulary (further OOV) word by combining semantic vector representations 
of its morphemes. In order to segment words into morphemes, the researchers used 
either manually written rules or the Morfessor tool [Smit et al., 2014]. [Luong et al., 
2013] claimed that Morfessor is especially handy for words in morphologically rich 
languages such as Finnish and Turkish so it is quite possible that this tool can be also 
applicable to the analysis of Russian. The other way to retrieve morphological seg-
ments was described in [Ruokolainen et al., 2014]: the authors used supervised and 
semi-supervised linear-chain CRF-based algorithms to segment words. The idea 
to use morphemes was further elaborated in [Xu et al., 2017] and [Filchenkov, 2017], 
where the authors tried to implicitly use morphological information by linking each 
morpheme with the word that defines the semantic meaning of this morpheme (for 
example, representing the affix “micro” with the word “small”).

Another way to solve the problem of modeling OOV words meaning was pro-
posed in [Singh et al., 2016]. For each unknown word, the authors searched for the 
words from the model dictionary that have as many common character 3-grams with 
this target word as possible. After that, the meaning of the unknown word was repre-
sented as the weighted average of top 10 words found during the search. [Bojanowski 
et al., 2017], in turn, introduced fastText algorithm that is based on the idea of using 
character n-grams combinations of different length as subword information modify-
ing the existing SkipGram architecture. In this paper, the authors used the materi-
als of several languages including English, German, Spanish, French and Czech, and 
claimed to achieve state-of-the-art performance in the tasks of word similarity and 
analogy, which makes their approach particularly interesting to compare with the 
ones that use morphemes to represent the meanings of OOV words.

3.	 Resources used

3.1.	Corpora

To train all the models (except for the supervised CRF-based morpho-segmen-
tation model which was trained on the part of Tikhonov’s morphological dictionary 
[Tikhonov, 1990]) and to compile the word similarity dataset, we used the Russian 
National Corpus (further RNC), which is the flagship academic corpus of Russian. 
The data from the corpus was lemmatized with Mystem [Segalovich, 2003], all punc-
tuation was removed and all words were lower-cased. An additional filtering proce-
dure we employed was deletion of all the sentences which contained less than three 
words.

The final size of the training corpus for the additional DWEM trained on mor-
phemes from the CRF-based model is 124,961,390 word tokens and 10,099,999 sen-
tences, for all other DWEMs it is 161,044,270 word tokens and 12,994,398 sentences.
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3.2.	Training algorithms

The DWEMs that employ subword information in the form of morphemes were 
trained using Word2Vec (a widely used instrument for training DWEMs) Continuous 
SkipGram algorithm with vector size 300, Negative Sampling approach [Mikolov et al., 
2013b] with the number of negative samples set to 15 and a symmetric context window 
of 5 words to the left and 5 words to the right. Lemmas served as input for the main 
model that does not include any subword information while the additional models 
were fed in the following way: one—with morphs received after segmenting lemmas 
by Morfessor, the other—with morphs from CRF-based morpho-segmentation model.

The choice of the vector size was motivated by the fact that generally this size 
is perceived as optimal for semantic vectors [Jurafsky, 2000]; for more information 
on how the vector size influences the performance of models we refer the reader 
to [Kutuzov and Andreev, 2015].

Speaking about the number of negative samples, [Mikolov et al., 2013b] stated 
that the best performance is achieved when the value of the parameter lies in the 
range from 5 to 20 if a model is trained on a big amount of data and that was proved 
by the results of the tests conducted by the author: the highest performance was shown 
by the model that was trained on 1 billion word tokens with 15 negative samples. This 
conclusion is also supported by [Levy et al., 2015]: while using Negative Sampling ap-
proach it is preferable to use many negative samples.

The reason for choosing relatively wide window size was the following: despite 
the known fact that larger windows induce the models that are more “associative” 
[Levy and Goldberg, 2014], the models which use narrow windows can miss important 
parts of context for some words, especially in the case of discontinuous constituents. 
Moreover, the words that are situated far from the focus one will have little impact 
on the final representations compared to the closest words and the actual window for 
a fair amount of words will be less than 5 words from the both sides. There are several 
reasons for that: use of Word2Vec which employs weighting scheme by the distance 
from the focus word divided by the window size [Levy et al., 2015] and limitations put 
on the number of context words induced by the choice of sentence as a context item. 
Considering all these facts, the models will be less “associative” than it can be expected.

All the tokens that appeared in the training corpus less than 3 times were discarded. 
Down-sampling parameter was set to the default value (equal to 0.001) because there was 
no stop-words removal procedure at the stage of data preparation. The use of this param-
eter can widen the context window because the removal of frequent word tokens in Word-
2Vec is done before the corpus is processed into word-context pairs (so-called “dirty” 
down-sampling). However, [Levy et al., 2015] stated that the impact of “dirty” down-
sampling on the performance is comparable to the “clean” down-sampling and hence can-
not dramatically influence the results. During the training, the algorithm iterated over 
the corpus 5 times. In the end of the training, the main model that does not include any 
subword information contained vectors for 276,463 words, whereas the additional model 
with Morfessor had 11,114 vocabulary units and the one with CRF—138,952.

The parameters used to train the fastText model that uses subword informa-
tion in the form of character n-grams were almost the same as for the two previous 
ones except for the frequency threshold: it was set to 5. It was done to reduce the size 
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of the model. The expected information losses induced by this decision are minimal, 
because the information that the fastText model learned from all character n-grams 
of words should in theory be able to compensate for the losses. In the end of the train-
ing, the fastText model contained vectors for 202 396 words.

We used n-grams of length 4 and 5. Clearly, this parameter can vary depending 
on the task and the language, however the investigation of this dependency lies out of the 
scope of this work. The key parameters used for training our models are shown in Table 1.

Table 1: The key parameters of the models

Model name
Vector 
size

Context 
window

Minimal 
count

Negative 
samples

N-grams 
range # of vectors

main model 300 10 3 15 ~ 276,463 (lemmas)
additional 
model 
(Morfessor)

300 10 3 15 ~ 11,114 
(morphemes)

Additional 
model 
(CRF‑based)

300 10 3 15 ~ 138 952 
(morphemes)

fastText 300 10 5 15 4–5 202,396 (lemmas)
404,245 (ngrams)

3.3.	The morpho-segmentation algorithms

The first model for segmenting words in morphemes was trained using the Mor-
fessor tool. The method chosen for training the model is Morfessor Baseline [Creutz 
and Lagus, 2002]; [Creutz and Lagus, 2005], which is a context-independent splitting 
algorithm. The model was trained in batch fashion with the following parameters: 
recursive algorithm, no words discarded and no count modifier function for adjusting 
the counts of words.

The second model for morpho-segmentation is supervised morphological linear-
chain CRFs model described in [Ruokolainen et al., 2014]. We used Tikhonov’s mor-
phological dictionary as training data for this model: we randomly picked 828 entries 
as train set and 516—as development set.

4.	 Gold standard word similarity dataset

4.1.	Word pairs formation

The selection of rare and multimorphemic words was executed in two steps: first, 
the candidates were filtered by the number of morphemes segmented by Morfessor 
and, second, according to the word frequency.

A candidate word was considered as multimorphemic if it was segmented into 
5 or more morphemes. Only the candidate words that occurred in the RNC less than 
1,000 times were picked. [Luong et al., 2013] set the maximum frequency threshold 
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for the formation of rare word dataset to 10,000, but they used the English Wikipedia, 
which is obviously several times larger than the RNC. The frequency data was col-
lected through querying the RNC website search engine.

After the selection procedure, the words were divided into three groups according 
to their frequency: extremely rare [1, 10], moderately rare [11, 100], and common [101, 
1,000]. Then 40 words were randomly picked from each group, but during the manual 
control procedure it was discovered that some of the words are not suitable for the gold 
standard because it would be difficult for the human experts to define their similarity 
to another word in pair. This category of words consisted of possessive adjectives that 
denote belonging to some entity (for example, “мефистофелевский” (“mephistoph-
elic”) and “стерлитамакский” (“belonging to Sterlitamak”)) and complicated names 
of chemical compounds. All the words of this category belonging to the group of ex-
tremely rare were removed and the ones that belonged to the group of moderately rare 
were replaced in the final list by the words belonging to the common group. After that, 
the total number of words was 104, from which 46 are common, 34 are moderately 
rare, and 24 are extremely rare. The distribution of parts of speech was the following: 
73 adjectives (participles also fall in this category), 23 nouns, 6 verbs and 2 adverbs.

For word pairs formation, we planned to use RuThes Lite [Panchenko et al., 2016] 
lexical database. However, only 3 words from our list of rare and multimorphemic words 
were found in RuThes Lite and hence for all the remaining 101 words the pairs were formed 
manually. The main criteria for word pairs formation was the same part-of-speech tag for 
both words in a pair because as it was shown in [Markman and Wisniewski, 1997], when 
comparing words in noun—noun pairs and verb—verb pairs, different cognitive opera-
tions are employed. It means that the presence of the pairs with different part-of-speech 
tags can make the annotation task more complicated for the human experts.

4.2.	Annotation procedure

To collect the semantic similarity scores, crowdsourcing with the Google Forms 
web service was used. The survey was divided in 3 parts: in the first part the par-
ticipants had to read the annotators guidelines2, in the second part they were asked 
to submit their personal data (age, sex and level of education) and in the third part 
they started to annotate. The pairs were grouped into 18 groups and each of the 
groups contained 5 or 6 pairs. The final version of the word similarity dataset is or-
ganized in the following way: 104 lines, where each line consists of a word pair and 
13 scores of its semantic similarity proposed by the annotators.

4.3.	Inter-annotator agreement measure

In order to measure the inter-annotator agreement, the Krippendorff’s alpha 
[Krippendorff, 2011] metric was used: it was computed for each pair of annotators 
and then the overall mean was calculated. The score was 0.648 which is high enough 

2	 The full guidelines are available at https://github.com/sadov-m/DSM_morphology/blob/
master/golden_standard/annotation_guide.docx

https://github.com/sadov-m/DSM_morphology/blob/master/golden_standard/annotation_guide.docx
https://github.com/sadov-m/DSM_morphology/blob/master/golden_standard/annotation_guide.docx
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to state that our dataset is a reliable evaluation sample for measuring performance 
of DWEMs on rare and multimorphemic words.

5.	 Results

For measuring the performance of the models, Spearman’s rank correlation co-
efficient [Spearman, 1904] was used. We chose this method of evaluation instead 
of precision and recall metrics, because they are not suitable for semantic similarity 
task: DWEMs performance is as a rule estimated by calculating the rank correlation be-
tween pairwise scores from the model and from human judgements [Hill et al., 2015].

5.1.	Performance with Morfessor

The proportion of pairs that contain OOV words for the SkipGram+Morfessor 
model is approximately 17.3 percent (18 words in 18 pairs) whereas for the fastText 
model it is 19.2 percent (20 words in 20 pairs).

Table 2.1: Spearman’s rank correlation values (ρ) between 
the human experts scores and models estimations on the full 

word similarity dataset (Morfessor experimental set-up)

Model name Ρ p-value OOV words total words

SkipGram+Morfessor 0.5369 4.2125e-09 17.3% 104
fastText 0.7337 8.0981e-19 19.2% 104

As can be seen in Table 2.1, the fastText model slightly outperformed the 
SkipGram+Morfessor model despite having more OOV words to predict and the re-
sults are reliable at the 99.9 percent confidence level. After the tests on the full sample 
the sets of OOV words belonging to the word similarity dataset for both models were 
intersected, and the test was repeated on OOV words only. The results are shown 
in Table 2.2 and now the leadership of the fastText model is much more obvious. 
Despite little amount of words in this testset it is obvious that SkipGram+Morfessor 
model was not able to model the meanings of OOV words at all. The main reason for 
that can be found in the segmentations made by Morfessor.

Table 3: Spearman’s rank correlation values (ρ) between the 
human experts scores and models estimations on the common 

set of OOV words (Morfessor experimental set-up)

Model name Ρ p-value OOV words total words

SkipGram+Morfessor −0.1647 0.5134 100% 18
fastText       0.7176 0.0007 100% 18

The Morfessor Baseline algorithm used in this work has several limitations. 
The most important one is its contextual independence which resulted in our 
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Morfessor model violating morpho-tactic rules: for example, it suggested the prefix 
“по” in non-word-initial positions (“вал/ян/оса/по/ж/ник”, “felt boots maker”). 
The other limitation came from the fusion nature of Russian: our Morfessor model 
performed well on the words with complex but consecutive morphology (for exam-
ple, “полу/рас/па/вший/ся”, “half-disintegrated”), but predictably made mistakes 
in the cases with fusion (“сте/речь”, “to guard”). The last typical error of our Mor-
fessor model was over-segmentation of strings which include frequent morphemes 
(“ра/б”, “slave”).

5.2.	Performance with CRF-based morphological model

Table 3.1 shows almost the same figures: the fastText model results was again 
superior to the ones of SkipGram+CRF-based model.

Table 3.1: Spearman’s rank correlation values (ρ) between the 
human experts scores and models estimations on the full word 

similarity dataset (CRF-based model experimental set-up)

Model name Ρ p-value OOV words total words

SkipGram+CRF-based 0.5344 5.0973e-09 17.3% 104
fastText 0.7337 8.0981e-19 19.2% 104

However, the results of the test on OOV words only in Table 3.2 show that 
SkipGram+CRF-based model performed even worse despite the higher quality of mor-
phological segmentation provided by CRF-based model.

Table 3.2: Spearman’s rank correlation values (ρ) between the 
human experts scores and models estimations on the common 

set of OOV words (CRF-based model experimental set-up)

Model name Ρ p-value OOV words total words

SkipGram+CRF-based −0.3244 0.189 100% 18
fastText       0.7176 0.0007 100% 18

6.	 Conclusion

We compared two approaches of including subword information into Russian 
word embedding models:

1. 	 the morphological approach including two SkipGram DWEMs;

2. 	 the character n-grams approach based on the fastText DWEM.

All the models were trained on the RNC. Additionally, we introduced the word 
similarity dataset of rare and multimorphemic words for Russian and evaluated our 
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models against it. We publish all the models3, 4, 5, 6 together with the gold standard 
dataset7.

After the evaluation, we discovered that the fastText model showed great results 
despite having more OOV words to predict. On the contrary, both SkipGram models 
failed at learning representations of OOV words.

Our word similarity dataset features a good inter-annotator agreement score 
(α = 0.648) which permits us to state that it is suitable for measuring the performance 
of DWEMs on rare and multimorphemic words.

We also revealed several flaws in the Morfessor Baseline algorithm and came 
to the conclusion that the tool performance on complex words with fusion is relatively 
poor and the algorithm itself has too many limitations to be considered reliable.

As a future work, we plan to study in more detail how different morpho-seg-
mentation approaches affect the performance of the models trained on morphemes. 
We also would like to widen our word similarity dataset of rare and multimorphemic 
words for Russian.
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