
	 1

Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2018”

Moscow, May 30—June 2, 2018

IMPROVING NEURAL MORPHOLOGICAL
TAGGING USING LANGUAGE MODELS1

Sorokin A. A. (alexey.sorokin@list.ru)
Moscow Institute of Physics and Technology, Dolgoprudnyj, Russia
Lomonosov Moscow State University, Moscow, Russia

We offer a new neural architecture for character-level morphological tag-
ging, combining character-level networks with the output of neural lan-
guage model on morhological tags. Our proposal reduces tagging error
up to 10% in comparison with baseline model and achieves state-of-the-art
performance both on ru_syntagrus and MorphoRuEval datasets.

Keywords: morphological analysis, tagging, neural network, neural lan-
guage model, character-based models

АВТОМАТИЧЕСКИЙ МОРФОЛОГИЧЕСКИЙ
АНАЛИЗ НА ОСНОВЕ НЕЙРОННЫХ
МОДЕЛЕЙ С ИСПОЛЬЗОВАНИЕМ
ЯЗЫКОВЫХ МОДЕЛЕЙ

Сорокин А. А. (alexey.sorokin@list.ru)
Московский физико-технический институт,
Долгопрудный, Россия
Московский государственный университет
им. М. В. Ломоносова, Москва, Россия

1	 The research was conducted under support of National Technological Initiative Foundation
and Sberbank of Russia. Project identifier 0000000007417F630002.

Sorokin A. A.﻿﻿﻿﻿

2�

Данная работа посвящена автоматическому морфологическому ана-
лизу. Мы показываем, что комбинация символьных нейронных сетей
с нейронными языковыми моделями улучшает качество морфологи-
ческого анализа, снижая количество ошибок на 10%, при этом данный
результат достигается без использования дополнительных ресурсов.
Результат ещё улучшается в случае дополнительного использования
морфологического словаря.

Ключевые слова: морфологический анализ, нейронные сети, сим-
вольные нейронные сети, нейронная языковая модель

1.	 Introduction

There is no exaggeration in saying that last decade in computational linguistics
is the decade of «neural network turn». The works of Tomas Mikolov, e.g. [Mikolov,
2013], on vector representations of words revolutionized not only computational
semantics, but entire computational linguistics (further, CL), stimulating the fast
growth of embedding-based approach. Another breakthrough insight was the intro-
duction of character-based networks by Santos and Zadrozny [Santos and Zadrozny,
2014], permitting the researchers to solve practically every task from scratch pro-
vided enough data is available. After only several years, the vast majority of CL tasks
of different complexity, from machine translation to morphological tagging, is solved
mostly using different neural network-based architectures.

In the present paper we focus on the task of automatic morphological tagging
which takes as input the sequence of words and assigns each word a label (or tag) con-
taining the morphological description of that word. In early years of CL only the part-
of-speech information was labeled, therefore this task is sometimes referred as POS-
tagging. For analytical languages like English the sets for coarse part-of-speech tag-
ging and fine-grained morphological labeling does not differ much in size and com-
plexity. However, most of the languages are far more complex in its morphology and
have a wider inventory of morphological categories, which makes the task of detailed
morphological analysis much harder than coarse POS-tagging. Downstream applica-
tions benefit more from detailed morphological information (words connected by syn-
tactic dependency often agree in their morphology, which cannot be revealed using
only part-of-speech tags), therefore we address this very task and use the term mor-
phological tagging through the paper.

Despite the undoubtable evidence for superior performance of neural network
models for the plenty of tasks, their usage for morphological tagging worths fur-
ther discussion. Indeed, most neural models were tested for English which has un-
bounded amount of training data and very simple morphology. For more complex
morphology the patterns might be the opposite: for example, already the pioneer
work [Lafferty et al., 2001] on conditional random fields was compatible with other
morphological taggers. On the contrary, only clever design of learning process and
output space made them capable to achieve state-of-the-art tagging level [Muller,
2013]. There is no a-priori evidence, that the same neural architectures are suitable

Improving neural morphological Tagging using Language Models

	 3

for developed morphological structure of Russian or for small corpora in case of less
widespread languages.

However, both the doubts are decisively disproved by recent research. What con-
cerns the second problem, [Heigold et al., 2017] showed that a character-based neural
tagger outperforms state-of-the-art CRF parser for a wide range of languages. The ef-
fect is rather clear even for training corpora with a thousand training sentences. That
implies that LSTMs are more effective in capturing morphosyntactic patterns than
CRFs possible due to their capability to learn long-distance dependencies.

The results of MorphoRuEval challenge [Sorokin et al., 2017] demonstrated that
a deep neural model of [Anastasiev et al., 2017] defeats by a huge margin the sec-
ond ranked tagger of [Sorokin and Yankovskaya, 2017], combining a hidden Markov
model with linguistically motivated rules for reranking. Both these systems exten-
sively used external knowledge in the form of morphological dictionary, the first one
also utilized the output of a closed rule-based semantic parser as feature, while the
second heavily relied on feature engineering. Interestingly, other neural models ex-
cept the winner were clearly behind second place.

Before describing our approach I would like to emphasize the difference between
the behavior of neural and Markov tagging models on the example sentence

его решение задачи было неправильным
(1) ego reshenie zadachi bylo nepravil’nym

his solution+Sg+Masc problem+Sg+Gen be+Past+Sg+Neut incorrect+Sg+Masc+Ins

Due to extensive regular homonymy in Russian it has more than 100 variants
of tagging as summarized in the table below.

Table 1. Regular homonymy in Russian for the sentence
Его решение было неправильным

Word
Number
of tags Tags

его 5 pron, Gender=Masc, Case=Gen
pron, Gender=Masc, Case=Acc
pron, Gender=Neut, Case=Gen
pron, Gender=Neut, Case=Acc
det

решение 2 noun, Gender=Neut, Case=Nom
noun, Gender=Neut, Case=Acc

задачи 3 noun, Number=Sing, Case=Gen
noun, Number=Plur, Case=Nom
noun, Number=Plur, Case=Acc

было 2 aux, Gender=Neut
part

неправильным 3 adj, Number=Sing, Gender=Masc, Case=Ins
adj, Number=Sing, Gender=Neut, Case=Ins
adj, Number=Plur, Case=Dat

Sorokin A. A.﻿﻿﻿﻿

4�

When parsing this sentence, an HMM relies on dictionary word-tag statistics
and tag trigram frequencies. It decides that было should be an aux since it is a dom-
inant label of this word. An aux,Gender = Neut tag is often followed by a neutral
adjective in instrumental case and preceded by a noun, Gender=Neut, Case=Nom
noun, Number=Sing, Case=Gen bigram. Finally, a determiner is more prob-
able to occur before a noun, than a personal pronoun. Thus, the correct labeling
is uncovered using only the tag cooccurence statistics. However, consider another
sentence:

его решение задачи будет неправильным
(2) ego reshenie zadachi budet nepravil’nym

his solution+Sg+Masc problem+Sg+Gen be+Fut+Sg incorrect+Sg+Masc+Ins

Russian verbs do not change by gender in non-past tense, consequently, the ad-
jective неправильным has nothing to support the Gender=Neut hypothesis among its
two preceding tags. Therefore HMM and CRF model are likely to fail since they do not
take remote context into account.

On the contrary, neural models rely on the lexemes themselves, not the tag
statistics. The word было (not its tag) forces the network to assign Number=Sing,
Gender=Neut label to the next adjective неправильным and Case=Nom label to the
word решение in its left vicinity. This latter word supports det reading for его and
case=Gen reading for задачи since genitives nouns often follow решение. Actually,
this evidence is confirmed by other words ending by –ние as well since character-
based networks capture graphical similatity. Moreover, a neural model probably cap-
tures the dependency between решение and неправильным making the second ex-
ample less problematic.

Summarizing, lexical information is more important than grammar constraints
that HMMs are trying to capture. The main advantage of neural network with respect
to HMMs and CRFs is its ability to compress this information. It is usually “stored”
in the states of a bidirectional LSTM, often being the principal layer of the model.
To produce the probability distribution of word tags these states are usually passed
through a one-layer perceptron with softmax activation. However, the tags predicted
for different words do not directly affect each other. Consequently, the network has
no direct mechanism to impose grammatical constraints on tag cooccurrences which
may potentially limit its performance.

These constraints can in principle be learnt by neural language models on mor-
phological tags. Such models are known to capture long-distance dependencies using
memory mechanisms [Tran et al., 2016]. We propose two combinations which com-
bine an underlying BiLSTM model of [Heigold et al., 2017] with a neural language
model via the topmost layer of the tagger.

We apply our approach to UD2.0 [Nivre et al.] and MorphoRuEval [Sorokin et al.,
2017] datasets for Russian language. Our paper is organized as follows: Section 2 in-
troduces the baseline BiLSTM model, section 3 explains our extension of it, section
4 describes the experimental setup and presents tagging results, section 5 discusses
the results obtained and we conclude with directions for future work.

Improving neural morphological Tagging using Language Models

	 5

2.	 Baseline model

Morphological tagging is a task of predicting a correct sequence of morpho-
logical tags 𝒕 = 𝑡₁, …, 𝑡𝑛, given the words 𝒗 = 𝑣₁, …, 𝑣𝑛. A character-based approach
of [Heigold et al., 2017] addresses this problem from scratch and does not require any
other resources except for a morphologically annotated corpus. Their model consists
of two parts: the first encodes each word 𝑣𝑖 (a sequence of characters) as a fixed-width
embedding vector ℎ𝑖, while the second transforms the obtained sequence of vectors
ℎ₁, …, ℎ𝑛 to the morphological tags.

First, we describe the encoding component of the model. The paper of Heigold
uses two architectures for word representation: the first is a 2-layer LSTM while the
second combines several convolutional and highway layers. The first one slightly
outperforms the second for most languages, however, we selected the second due
to memory requirements. We refer the reader to the original paper for the full descrip-
tion, see also [Kim et al., 2016], applying the same ideas to neural language model-
ling. Briefly, the architecture is the following:

1.	� Each character is encoded as a 1-hot row vector with 𝑛𝑐 dimensions, where
𝑛𝑐 is the number of characters. A word of length 𝐿 is represented by a se-
quence of 𝐿 such vectors

1
, ,

Li ix x′ ′…

j
j

F f=∑

, yn
i iy y ∈
 



,[]

ij

ik

i i i

i i
z

ij z

y y

z Wy

e
e

y

π

=

=

=
∑

 

1 1 1 1 1(|) ~ (|) ()n n n n np t t v v p v v t t p t t… … … … …

1 1 1 1

1 1 2 1 3 1 2 4 2 3 2 1

(|) (|) (|)
(() (|) (|) (|) (|))

n n n n

n n n n

p v v t t p v t p v t
p t t p t p t t p t t t p t t t p t t t− −

=
=

… … …
… …

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

T
i i is C p=

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

, that form a matrix 𝑋 with 𝐿 rows and
𝑛𝑐 columns and exactly one unit in each row.

2.	� This matrix is multiplied by a matrix 𝑈 of size 𝑛𝑐×𝑛𝑒, producing a sequence
𝑋´=𝑋𝑈 of 𝐿 embeddings

1
, ,

Li ix x′ ′…

j
j

F f=∑

, yn
i iy y ∈
 



,[]

ij

ik

i i i

i i
z

ij z

y y

z Wy

e
e

y

π

=

=

=
∑

 

1 1 1 1 1(|) ~ (|) ()n n n n np t t v v p v v t t p t t… … … … …

1 1 1 1

1 1 2 1 3 1 2 4 2 3 2 1

(|) (|) (|)
(() (|) (|) (|) (|))

n n n n

n n n n

p v v t t p v t p v t
p t t p t p t t p t t t p t t t p t t t− −

=
=

… … …
… …

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

T
i i is C p=

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

. 𝑗-th element of this sequence is a dense
representation of 𝑖𝑗-th character in the alphabet.

3.	� 𝑋´ is passed through 𝐾 parallel convolutional layers with different widths.
After this step 𝐾 vectors of dimensions 𝑓₁,…,𝑘 are associated with each posi-
tion of the word. Roughly speaking, 𝑘-th of these vectors contains informa-
tion of useful ngrams of length 𝑤𝑘 around current position.

4.	� All the vectors from the previous step are concatenated, producing a vector
of length

1
, ,

Li ix x′ ′…

j
j

F f=∑

, yn
i iy y ∈
 



,[]

ij

ik

i i i

i i
z

ij z

y y

z Wy

e
e

y

π

=

=

=
∑

 

1 1 1 1 1(|) ~ (|) ()n n n n np t t v v p v v t t p t t… … … … …

1 1 1 1

1 1 2 1 3 1 2 4 2 3 2 1

(|) (|) (|)
(() (|) (|) (|) (|))

n n n n

n n n n

p v v t t p v t p v t
p t t p t p t t p t t t p t t t p t t t− −

=
=

… … …
… …

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

T
i i is C p=

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

 �for each symbol of the word. A word is now a matrix wit
𝐿 rows and 𝐹 columns.

5.	� A maximum-over-time (max-pooling) layer is applied to each row, finally en-
coding the word as a vector ℎ´ of fixed dimension 𝐹.

6.	� Several highway layers [Srivastava et al., 2015] are applied to this vector. Highway
layer performs the transformation ℎ=𝑠⊙(𝑉ℎ´)+(1−𝑠)⊙ℎ ,́ where 𝑉 is a square
matrix with 𝐹 rows, 𝑔 is a non-linear function and ⊙ denotes coordinate-wise
product. The highway layer simultaneously produces useful combinations of fea-
tures using one-layer perceptron (𝑉ℎ´) and keeps relevant dimensions of ℎ .́ The
contribution of both components is balanced by means of vector 𝑠, which is ob-
tained by another one-layer perceptron with sigmoid activation: 𝑠=(𝑆ℎ´).

The second component of the network transforms the obtained sequence of word
vectors ℎ₁, …, ℎ𝑛 into 𝑛 probability distributions 𝜋₁, …, 𝜋𝑛. Here 𝜋𝑗 contains tag prob-
abilities for 𝑗-th word in the sentence. First, two LSTMs are applied, the first process-
ing the sentence from left to right and the second from right to left. The first produces
vectors 𝑦⃗₁,…,⃗𝑛 and the second outputs 𝑦⃖𝑛, …, 𝑦⃖₁, thus each word is encoded by two
vectors

1
, ,

Li ix x′ ′…

j
j

F f=∑

, yn
i iy y ∈
 



,[]

ij

ik

i i i

i i
z

ij z

y y

z Wy

e
e

y

π

=

=

=
∑

 

1 1 1 1 1(|) ~ (|) ()n n n n np t t v v p v v t t p t t… … … … …

1 1 1 1

1 1 2 1 3 1 2 4 2 3 2 1

(|) (|) (|)
(() (|) (|) (|) (|))

n n n n

n n n n

p v v t t p v t p v t
p t t p t p t t p t t t p t t t p t t t− −

=
=

… … …
… …

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

T
i i is C p=

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

. The concatenation of these vectors is multiplied by a projection

Sorokin A. A.﻿﻿﻿﻿

6�

matrix 𝑊 with 𝑛𝑡 rows and 2𝑛𝑦 columns, 𝑛𝑡 being the number of tags. A softmax layer
yields the required probability distribution:

1
, ,

Li ix x′ ′…

j
j

F f=∑

, yn
i iy y ∈
 



,[]

ij

ik

i i i

i i
z

ij z

y y

z Wy

e
e

y

π

=

=

=
∑

 

1 1 1 1 1(|) ~ (|) ()n n n n np t t v v p v v t t p t t… … … … …

1 1 1 1

1 1 2 1 3 1 2 4 2 3 2 1

(|) (|) (|)
(() (|) (|) (|) (|))

n n n n

n n n n

p v v t t p v t p v t
p t t p t p t t p t t t p t t t p t t t− −

=
=

… … …
… …

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

T
i i is C p=

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

 (concatenation)

In [Heigold et al., 2017] this architecture is proved to be successful for languages
of different morphological structure even with only several thousands of tagged sen-
tences available for training.

3.	 Our proposal

3.1.	Language models

As has already been said, the described architecture does not care about for the
probability of the tag sequence “as a whole”, it only tries to predict the most probable
tag in each position. Hidden Markov models follow the opposite approach: they re-
write the probability of tag sequence given the word sequence as

1
, ,

Li ix x′ ′…

j
j

F f=∑

, yn
i iy y ∈
 



,[]

ij

ik

i i i

i i
z

ij z

y y

z Wy

e
e

y

π

=

=

=
∑

 

1 1 1 1 1(|) ~ (|) ()n n n n np t t v v p v v t t p t t… … … … …

1 1 1 1

1 1 2 1 3 1 2 4 2 3 2 1

(|) (|) (|)
(() (|) (|) (|) (|))

n n n n

n n n n

p v v t t p v t p v t
p t t p t p t t p t t t p t t t p t t t− −

=
=

… … …
… …

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

T
i i is C p=

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

and further decompose this probability as

1
, ,

Li ix x′ ′…

j
j

F f=∑

, yn
i iy y ∈
 



,[]

ij

ik

i i i

i i
z

ij z

y y

z Wy

e
e

y

π

=

=

=
∑

 

1 1 1 1 1(|) ~ (|) ()n n n n np t t v v p v v t t p t t… … … … …

1 1 1 1

1 1 2 1 3 1 2 4 2 3 2 1

(|) (|) (|)
(() (|) (|) (|) (|))

n n n n

n n n n

p v v t t p v t p v t
p t t p t p t t p t t t p t t t p t t t− −

=
=

… … …
… …

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

T
i i is C p=

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

assuming mutual independence of lexical probabilities 𝑝(𝑣𝑖|𝑡𝑖). Morphological tags
are supposed to be generated by a trigram model. Restricting lexical probabilities
to single word-tag pairs is a drawback of HMMs since the morphological tag depends
not only on the word it is assigned to, but also on the whole context (see discussion
in the introduction). But proposed Char-LSTM architecture lacks this component
at all, which limits its possibilities in an opposite way. Though, n-gram language mod-
els used in HMMs require much data for training and cannot access inner structure
of morphological tags. However, language models can be based on neural networks
as well, not only on n-grams: the probability of current tag 𝑡𝑖 given the preceding tags
𝑡₁,…,𝑡𝑖−1 might be obtained as an output of recursive neural network.

Neural language models were successful in modelling sequences of words (see
[Tran et al., 2016], [Kim et al., 2016] and multiple references there) in large-scale
tasks. We apply them to model sequences of morphological tags. We adapt the model
of [Tran et al., 2016] which uses a variant of memory networks [Sukhbaatar et al.,
2015] to attend the recent past.

Improving neural morphological Tagging using Language Models

	 7

Figure 1. Memory block from [Tran et al., 2016]

The goal is to extract information which is the most relevant to predict further
tags from the immediate left context of the current one. LSTM itself does this process-
ing the sentence from left to right, but only partially, an additional memory block
encoding context can capture more. The context in position 𝑖 is a matrix 𝑋𝑖 with 𝑑 rows
and 𝑚𝑣 columns containing 𝑑 preceeding elements 𝑥𝑖−𝑑+1,…,𝑖. We multiply this context
by two matrices 𝑀 and 𝐶 of size 𝑚𝑣×𝑚𝑒 obtaining two dense representations of the
context 𝑀𝑖=𝑋𝑖𝑀 and 𝐶𝑖=𝑋𝑖𝐶. Actually, 𝑗-th row of 𝑀 is the “input” embedding of 𝑗-th el-
ement in the vocabulary while 𝑗-th row of 𝐶 is its output embedding. 𝑀𝑖 is used to de-
fine the attention distribution over 𝑑 preceding elements, which is calculated as:

,1 ,[, ,] softmax(())i i i d i ip p M T h= … = +p

Informal explanation is the following: softmax favors those rows of 𝑀𝑖=𝑇 which
are the most similar to ℎ𝑖. 𝑇 is the bias which forces the model to attend particular
positions independent from their content. Since ℎ𝑖 indirectly encodes the information
about the past, the selected rows are the most relevant for this past. These rows should
contribute the most to the context representation, so we use 𝑝𝑖 as weights to produce
an output representation of the context:

T
i i is C p=

𝑠𝑖 and ℎ𝑖 are concatenated to produce a joint embedding of the context in 𝑖-th position includ-
ing both the global information from ℎ𝑖 and the relevant local information from 𝑠𝑖. As sug-
gested in [Tran et al., 2016], this encoding is propagated through another LSTM layer:

1

[,],
(, ,),

softmax().

i i
LM
i i
LM LM
i LM i

h s h
z LSTM h h

W zπ

′

=

′ …
=
= ′

In experiments of [Tran et al., 2016] 𝑥𝑖 are just one-hot word encodings. How-
ever, morphological tags possess inner structure, therefore we apply encoding scheme
summarized in Table 2. Additionally one can add an additional embedding layer be-
fore passing feature vectors to the LSTM. noun

Sorokin A. A.﻿﻿﻿﻿

8�

Table 2. Input encoding of morphological tags

Feature dimension Value

noun 1
verb 0
… 0
noun, case=Nom 1
noun, case=Gen 0
adj, case=Nom 0

0
noun, gender=Fem 1
noun, gender=Neut 0
noun, gender=Fem 0

Language model allows us to discriminate between probable and improbable
combinations of tags, the next step is to apply it to the output of Char-LSTM to filter
out inconsistent sequences.

3.2.	Model combination

Now for each word in the sentence we have two probability distributions that pre-
dict its morphological tag. The first is the one of the Char-LSTM model, while the second
generates current morphological label given already predicted tags 𝜋𝐿(𝑡𝑖)=𝑝𝐿𝑀(𝑡𝑖|𝑡1…
𝑡𝑖−1). They should be combined to produce the output distribution over tags. A naive
way is to sum their logarithmic probabilities log (𝑡𝑖)=log 𝜋𝑏𝑎𝑠𝑒(𝑡𝑖)+log 𝜋𝐿𝑀(𝑡𝑖), assum-
ing the independence of distributions under consideration. Obviously, these two dis-
tributions are not independent, therefore we take their weighted combination:

log () ~ log () (1) log ()base LM
i i it s t s tπ π π+ −

𝑠 itself is not a constant: obviously, the reliability of both distributions depends
from internal states of corresponding models as well as from the position in the sen-
tence. Informally, for some words the Char-LSTM model is already a good predictor,
so the language model weight should not be large. In the beginning of the sentence
neural LM is also irrelevant since there is no history it can rely on. On the contrary,
when observing rare or homonymous words we should trust the LM more. Summa-
rizing, we choose 𝑠 to be a vector of weights, not a single weight. It is predicted using
a single-layer perceptron with sigmoid activation:

[, ,],
()s

w base LM
i i i i

w w w
i i

z z z pos
S z bσ +

=
=

Here 𝑝𝑜𝑠𝑖=𝑙𝑜𝑔(1+𝑖) is a scalar encoding current position; 𝑧𝑖
𝑏𝑎𝑠𝑒 and 𝑧𝑖

𝐿𝑀 are the
states of the topmost LSTMs for Char-LSTM tagger and neural LM, respectively; 𝑠𝑖 and
𝑏𝑤 are vectors of dimension 𝑛𝑡𝑎𝑔𝑠 and 𝑆𝑤 is a matrix with 𝑛𝑡𝑎𝑔𝑠 rows and 𝑑𝑏𝑎𝑠𝑒+𝑑𝐿𝑀+1 col-
umns. Here 𝑑𝑏𝑎𝑠𝑒 and 𝑑𝐿𝑀 are hidden state dimensions for char-LSTM and neural LM,

Improving neural morphological Tagging using Language Models

	 9

respectively. In principle, a multilayer network instead of a single layer could be ap-
plied. We refer to this architecture as Char-Weight in the further.

However, the weighting scheme helps only if at least one probability distribution
is reliable, it is not capable to correct synchronous errors. Analogously to [Gulcehre,
2015], we use another approach. The output distributions of both the neural LM and
the CharLSTM tagger are obtained by projecting their states by means of one-layer
perceptron. It implies that all the probability information is already encoded in these
states. The idea is to fuse the states of CharLSTM and neural LM into a single state and
then process it using a separate network. We choose a two-layer perceptron with ReLU
activation as such a network, formally:

1 1

2 2

[, ,],
' max(,0),

softmax(').

w base LM
i i i i

w w
i i

w
i i

z z z pos
z S z b

S z bπ

=
= +

+=

We refer to the second model as CharFusion.

4.	 Experiments and Results

4.1.	Experimental setup

For CharLSTM model we use the setup of [Heigold et al., 2017] with minor modi-
fications. Namely, character encoding dimension is 32, there are 7 convolutional lay-
ers applied in parallel with their width ranging from 1 to 7. The number of filters
on layer with width 𝑤 is min(200, 500𝑤), so each position of the word is encoded
by vector with 1100 elements after passing the convolution. On the word level we use
LSTMs with 128 units in each direction. To prevent overfitting we apply dropout
to word embeddings and to the outputs of topmost LSTM layer, the dropout probabil-
ity is 0.2. We use the shallow variant of the architecture, which means only 1 convo-
lutional and highway layers are applied on character level and only one LSTM layer
on the word level.

In the neural language model dense tag embeddings have dimension 96 as well
as the memory embeddings in the attention layer, the history window to be attended
is 5. Output LSTM has 128 hidden units. 0.2 dropout is applied to the outputs of all
embedding layers. In the CharFusion model we use 256 units on the hidden layer
of the output perceptron.

All models are implemented in Keras library [Chollet et al.] with Tensorflow
backend. The models are optimized using Adam optimizer with Nesterov momentum
[Dozat, 2016], the learning rate and other optimizer parameters are set to default.
The taggers are trained for 75 epochs, language models are trained for 50 epochs, the
conventional cross-entropy loss (negative logarithmic probability of correct sequence)
is used. When training CharWeight and CharFusion models, we train the basic CharL-
STM component of them as well, the weight of the basic model loss is 0.25. We stop

Sorokin A. A.﻿﻿﻿﻿

10�

training when the loss on development set have not improve for 10 epochs, saving the
model with the best performance on the validation set.

We did not perform exhaustive hyperparameter search. However, preliminary
experiments has shown that character embeddings of size 16 as in the original paper
lead to worse performance and using recurrent networks with more hidden states
or layers slightly deteriorates tagging accuracy. We have also found that regularizing
the output probability distribution with L2 loss makes this distribution smoother and
prevents overfitting, the regularization coefficient was set to 0.005.

Searching for the optimal tag in position 𝑖 requires the knowledge of preceding
morphological label. In the training phase we feed the model with golden tags, which
are not available in test time. Therefore during testing we predict the tags one-by-
one from left-to-right and return the sequence with maximal sum of logarithmic tag
probabilities. To make the model capable to recover from its errors we apply a beam
search with beam width 5. That raises the problem of exposure bias: when training,
the model sees only the correct tags as the left context. However, if in the test phase
the models fails to predict a correct tag in position 𝑖, all the predictions in positions
𝑖+1, 𝑖+2, … will be done with incorrect tag history. Neither the tagger, nor the lan-
guage model, are able to deal with such histories since they were trained only on gold
contexts. This problem is called the exposure bias, to alleviate it we replace a 20%
fraction of tags in the left context by a vector of all zeros forcing the model to operate
correctly even if it lacks complete information about tag history.

4.2.	Dataset

We evaluate our model on ru_syntagrus subcorpus of Universal Dependencies
2.0 corpus [Nivre et al.], the train subsection was used for training, the develop-
ment one for validation and the test part for evaluation. We lowercase all the words,
in case a word starts with a capital letter or consists of all capitals special pseudolet-
ters <first_upper> or <all_upper> were added in the beginning. All the letters
appearing less than 3 times were replaced by special <unk> symbol.

The size of the corpus in sentences and words is given in 3. Experimental results
are presented in Table 4, we evaluate both per-tag and per-sentence accuracy. We ob-
serve that CharWeight model reduces error rate by about 6% depending on the corpus
while the CharFusion error reduction exceeds 10%. It demonstrates that our model
indeed improves the quality of morphological tagging.

Table 3. ru_syntagrus corpus statistics

Corpus Words Sentences

Train 870,033 48,814
Development 118,427 6,584
Test 117,276 6,491

Improving neural morphological Tagging using Language Models

	 11

Table 4. Evaluation on UD2.0 dataset. ERR—error rate reduction

Model Tag accuracy ERR Sentence accuracy ERR

CharLSTM (baseline) 95.19
95.22

0.0
0.0

52.22
50.98

0.0
0.0

CharWeight 95.54
95.52

7.3
6.3

54.95
53.66

5.7
5.5

CharFusion 95.70
95.70

10.6
10.0

57.15
56.29

10.3
10.8

4.3.	Using morphological dictionary

Roughly speaking, morphological tagging for dictionary words simply selects the
most appropriate tag from a predefined set of dictionary tags of the current word.
Therefore we enrich the data which the model accesses with the output of morpho-
logical analyzer PyMorphy [Korobov, 2015]. For each word we compute the set of pos-
sible tags using PyMorphy, transform these tags to UD2.0 format by means of freely
available russian-tagsets package and extract all UD2.0 categories that are compatible
with the labels obtained. The list of categories is encoded using one-hot scheme and
then embedded into a dense vector of length 256. This vector is concatenated to word
embedding that is obtained from the character-level network.

Table 5 contains results of model evaluation in case a morphological dictionary
is added. We find that there is no clear gain from using a language model in this case.
This effect is surprising to us and we plan to investigate it further.

Table 5. Tagging accuracy when using a language model

Model Tag accuracy ERR Sentence accuracy ERR

CharLSTM(baseline) 95.19
95.22

0.0
0.0

52.22
50.98

0.0
0.0

CharLSTM+PyMorphy 96.30
96.43

23.0
25.3

60.48
60.01

17.3
18.4

CharWeight+PyMorphy 96.26
96.43

22.2
25.3

60.65
60.21

17.6
18.8

CharFusion+PyMorphy 96.34
96.46

23.9
25.8

61.80
60.70

20.0
19.8

5.	 MorphoRuEval 2017 Dataset

We also evaluate our models on MorphoRuEval-2017 dataset [Sorokin et al.,
2017]. We compare against two best models, the deep learning one of [Anastasiev
et al., 2017] and the HMM-based rule reranker [Sorokin and Yankovskaya, 2017]. The
results of comparison are in Table 6. We used the results mentioned in the papers and
the official evaluation script of the contest.

Sorokin A. A.﻿﻿﻿﻿

12�

Table 6. Results on MorphoRuEval-2017 dataset

Model

MorphoRuEval dev MorphoRuEval test

Tags Sentences Tags Sentences

Anastasiev et al., 2017 97.8 NA 97.1 83.3
Sorokin, Yankovskaya, 2017 96.3 78.5 94.8 69.3
CharLSTM [Heigold et al., 2017] 95.8 74.9 94.6 67.0
CharFusion 96.1 77.0 94.9 68.0
CharLSTM+PyMorphy 96.3 77.4 95.1 68.8
CharFusion+PyMorphy 96.6 79.8 95.4 71.1

We observe that our best model outperforms the second system of Morpho-
RuEval-2017 being sufficiently behind the first one. Note, that the model of [Anastasiev
et al., 2017] used an additional training corpus and complex representations from
in-house parser. Therefore our tagger demonstrates state-of-the-art performance
on MorphoRuEval dataset as well.

6.	 Conclusions and future work

The present work mainly is a “proof-of-concept”: we have demonstrated that
character-level morphological tagging can be significantly improved using neural
language models on morphological tags. Our work establishes a new state-of-the-art
for tagging from scratch without access to external morphological resources. The
natural direction is to test our approach on other languages with less data available
analogously to the previous work. However, tagging almost a half of the sentences
erroneously is a significant problem. Actually, some of these errors are not relevant
since UD morphological tags contain categories which cannot be determined from the
context (e. g., verb aspect) or does not have a clear bound from other categories (e. g.,
participles, which are treated as verbs), therefore it would be more natural to exclude
them from being evaluated.

We have also demonstrated that adding the information from morphological dic-
tionary can further improve performance. Actually, we have tried the simplest way
to do it and further analysis is required. Another way to boost the model is to utilize
task-independent embeddings obtained from large unlabeled corpora. The next chal-
lenge is to achieve the state-of-the art quality of closed systems using only open re-
sources. We plan to address this question in the future work.

Another direction of research is improving neural models for morphological tags.
Actually, not all government constraints can be addressed by the language model. For
example, prepositions in Russian require different cases to their right (“без друга”
without the friend+Gen vs “про друга» about the friend+Acc). The information about
preposition cases is not encoded in their UD tags therefore in this case the CharL-
STM component has to do the job more appropriate to the tag language model. Even
a harder problem arises with verb government, consider солгал другу vs обманул
друга both meaning “told+3 a lie to a friend” but with different case forms of the word
друг (“friend”). Such examples demonstrate that actually we cannot separate “lexical”

Improving neural morphological Tagging using Language Models

	 13

and “morphological” part of tagging models. Probably, morphological tagging should
be tackled using more complex architectures for sequence-to-sequence learning.

Summarizing, we have introduced a straightforward and linguistically motivated
way to improve the quality of morphological tagging without having access to any ex-
ternal resources except the annotated corpus. Using external morphological dictionar-
ies further improves performance. Our architecture is language-independent and does
not have task-specific parameters, which makes it useful for applying “out of the box”.

7.	 Acknowledgements

The author thanks Ekaterina Yankovskaya for invaluable help in editing and
improving the first version of the paper. He is also grateful to his collegues in the
laboratory of Neural Systems and Deep Learning of Moscow Institute of Physics and
Technology and especially to Mikhail Arkhipov for helpful discussions.

References

1.	 Anastasiev D. G., Andrianov A. I., Indenbom E. M. (2017), Part-of-speech tag-
ging with rich language description, Computational linguistics and intellec-
tual technologies: Proceedings of the International Conference “Dialog 2017”.
[Komp’yuternaya lingvistika i Intellektual’nye Tekhnologii: Trudy Mezhdun-
arodnoy Konferentsii “Dialog 2017”], Moskva, pp. 2–13. http://www.dialog-21.
ru/media/3895/anastasyevdgetal.pdf

2.	 Gulcehre C. et al. (2015), On using monolingual corpora in neural machine trans-
lation. arXiv preprint arXiv:1503.03535.

3.	 Dozat T. (2016), Incorporating nesterov momentum into adam. Available
at https://openreview.net/pdf?id=OM0jvwB8jIp57ZJjtNEZ

4.	 Heigold G., Neumann G., van Genabith J. (2017), An extensive empirical evalu-
ation of character-based morphological tagging for 14 languages, Proceedings
of the 15th Conference of the European Chapter of the Association for Computa-
tional Linguistics. Valencia, Long Papers, Vol. 1., pp. 505–513.

5.	 Chollet F. et al.,� Keras, available at https://github.com/keras-team/keras
6.	 Kim Y., Jernite Y., Sontag D., Rush A. M. (2016), Character-Aware Neural Lan-

guage Models, AAAI, pp. 2741–2749.
7.	 Lafferty J., McCallum A., Pereira F. C. N. (2001), Conditional random fields: Prob-

abilistic models for segmenting and labeling sequence data, available at https://
repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers

8.	 Mikolov T., Chen K., Korrado G., Dean J. (2013), Efficient estimation of word rep-
resentations in vector space, arXiv preprint arXiv:1301.3781.

9.	 Müller T., Schmid H., Schütze H. (2013), Efficient higher-order CRFs for mor-
phological tagging, Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, Seattle, pp. 322–332.

10.	 Nivre J. et al., (2017), Universal dependencies 2.0., available at https://lindat.
mff.cuni.cz/repository/xmlui/handle/11234/1-1983

Sorokin A. A.﻿﻿﻿﻿

14�

11.	 Santos C. D., Zadrozny B.�� Learning character-level representations for part-of-
speech tagging (2014), Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), Bejiing, pp. 1818–1826.

12.	 Sorokin A. A. et al. (2017), MorphoRuEval-2017: an evaluation track for the au-
tomatic morphological analysis methods for Russian, Computational linguistics
and intellectual technologies: Proceedings of the International Conference “Dia-
log 2017”. [Komp’yuternaya lingvistika i Intellektual’nye Tekhnologii: Trudy
Mezhdunarodnoy Konferentsii “Dialog 2017”], Moscow, pp. 297–313, available
at http://www.dialog-21.ru/media/3951/sorokinaetal.pdf

13.	 Sorokin A. A., Yankovskaya E. V. (2017), Using Context Features for Morphologi-
cal Analysis of Russian, available at https://www.researchgate.net/publication/​
319623361_Using_Context_Features_for_Morphological_Analysis_of_Russian

14.	 Srivastava R. K., Greff K., Schmidhuber J. (2015), Highway networks, arXiv pre-
print arXiv:1505.00387.

15.	 Sukhbaatar S., Szlam A., Weston J., Fergus R. (2015), End-to-end memory networks,
Advances in neural information processing systems, Montreal, pp. 2440–2448.

16.	 Tran K., Bisazza A., Monz C. (2016), Recurrent memory networks for language
modeling, arXiv preprint arXiv:1601.01272.

	Sorokin A. A.: Improving neural morphological Tagging using Language Models
	Introduction
	Baseline model
	Our proposal
	Language models
	Model combination

	Experiments and Results
	Experimental setup
	Dataset
	Using morphological dictionary

	MorphoRuEval 2017 Dataset
	Conclusions and future work
	Acknowledgements
	References

