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1. Introduction

Using word embeddings is a standard practice in NLP systems, both in shallow 
and deep architectures [Goldberg, 2016]. Word embeddings exploits statistical tech-
niques to embed words in a vector space. In this space, words with similar meanings 
tend to be located close to each other. These techniques are based on the Harris dis-
tributional hypothesis [Harris, 1954], which says that words in similar contexts have 
similar meanings. This statement provides a framework to use semantic relationship 
between words. Word embeddings has been used in a wide variety of applications 
such as query expansion [Chen & Chen, 2007], building bilingual comparable corpora 
[Zhu, Li, Chen, & Yang, 2013], clustering [Di Marco & Navigli, 2013]. 

Classical count-based methods such as PMI matrices and SVD factorization were 
very popular to represent words as vectors. However, recently word2vec approach has 
been proposed to represent words as dense vectors by applying neural embedding meth-
ods [Mikolov, Chen, Corrado, & Dean, 2013]. The neural embedding methods are particu-
larly computationally-efficient predictive model for learning word embeddings. It comes 
in two types, the Continuous Bag-of-Words model (CBOW) and the Skip-Grams with 
Negative Sampling model (SGNS). In this work we answer the question of which model 
to choose for low resource languages when only small amounts of data are available.

Word normalization is an important data preprocessing step for learning word-
vector representations. It improves the vectors quality by reducing language variabil-
ity. In order to reduce words to a common base form, most stemmers use the extensive 
set of linguistic rules developed for specific language [Porter, 1980]. Usually low re-
source languages lack rule-based stemmers. In this work, we examine to what extend 
language independent stemmer can improve word embeddings quality when only 
small training data is available.

In addition, we suggest a new scheme for word vector evaluation. We aim 
to develop a method that can address the common shortcomings mentioned in [Hill, 
Reichart, & Korhonen, 2016], at the same time this methods can be easily reproduc-
ible for any language.

The remainder of the paper is organized as follows. Section 2 gives information 
on Buryat language. Then Section 3 provides an overview of the methods for building 
word-vector representations. Section 4 describes language independent stemming ap-
proach. Section 5 specifies the experimental setup and describes the evaluation meth-
odology. Finally, Section 6 provides results and comparisons of various word embed-
ding techniques.

2. Buryat language

Buryat language is one of the Mongolic languages. The majority of Buryat speak-
ers live in Russia along the northern border of Mongolia where it is an official language 
in the Buryat Republic, Ust-Orda Buryatia and Aga Buryatia. According to the Russian 
census of 2002, there are 353,113 native speakers in Russia. In addition, there are at least 
100,000 native speakers in Mongolia and the People’s Republic of China as well. There 
are regularly published Buryat newspapers, journals, books, films, television and radio 
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programs, however, according to UNESCO report, Buryat is considered to be an endan-
gered language and at risk of disappearing [Janhunen, 2006]. Implementation of NLP 
tools is crucial for language preservation and development. The first syntactic treebank 
for Buryat language based on the Universal Dependencies was developed in [Badmaeva 
& Francis, 2017]. Buryat language has seven cases and two numbers. Its alphabet 
is based on the general Cyrillic scripts with three additional letters.

3. Background

There are two major word-vector representation methods: the count-based methods 
(PMI matrix, SVD factorization) and the neural embeddings methods (SGNS, CBOW). 

The previous results suggest that the new embedding methods consistently out-
perform the traditional methods by a non-trivial margin on many similarity-oriented 
tasks [Baroni, Bernardi, & Zamparelli, 2014]. However this result was reported only 
for rich resources languages [Altszyler, Sigman, Ribeiro, & Slezak, 2016]. For exam-
ple, the model used in [Baroni, Bernardi, & Zamparelli, 2014] was trained on 2.8 bil-
lion tokens constructed by concatenating ukWaC1, the English Wikipedia2 and the 
British National Corpus 3. Unfortunately such big resources are not available for many 
languages, including Buryat language.

We strictly follow the notation that was used in [Levy, Goldberg, & Dagan, 2015], 
where 𝑤 ∈ 𝑉𝑊 is collection of words and 𝑐 ∈ 𝑉𝐶 their contexts, and 𝑉𝑊 and 𝑉𝐶 are the 
word and context vocabularies. The collection of observed word-context pairs Is 𝐷. 
The number of times the pair (𝑤 ,) appears in 𝐷 is denoted as #(𝑤 ,𝑐 ). Then, #(𝑤 ) = 
∑𝑐 ′∈ 𝑉𝑐  #(𝑤 ,𝑐 ′) and  #(𝑐 ) = ∑𝑤 ′∈ 𝑉𝑤  #(𝑤 ′,𝑐 ) are the number of times 𝑤  and 𝑐  occurred in 𝐷, 
respectively.

When words and contexts are embedded in a space of 𝑑 dimensions, each word 
𝑤  ∈  𝑉𝑊 is represented as a vector 𝑤 ⃗ ∈ ℝ𝑑 and each context 𝑐 ∈ 𝑉𝐶 is represented as a vec-
tor 𝑐 ⃗ ∈  ℝ𝑑.

In this work we focused on fixed-window bag-of-words contexts, where 𝐷 is ob-
tained by using a corpus 𝑤 1, 𝑤 2, …, 𝑤 𝑛 and defining the contexts of word 𝑤 𝑖 as the 
words surrounding it in an 𝐿-sized window 𝑤 𝑖−𝐿, …, 𝑤 𝑖−1, 𝑤 𝑖+1, …, 𝑤 𝑖+𝐿.

Section 3.1 describes the traditional pointwise mutual information method, 
which follows by singular values decomposition method in the Section 3.2. In addi-
tion, we examined word embeddings learned by GloVe, SGNS and CBOW methods. 
Due to space limitations we omitted their description here. The GloVe (Global vectors 
for word representation) method was described in [Pennington, Socher, & Manning, 
2014]. The neural based methods SGNS and CBOW were described in [Mikolov, Chen, 
Corrado, & Dean, 2013].

1 http://wacky.sslmit.unibo.it

2 http://en.wikipedia.org

3 http://www.natcorp.ox.ac.uk
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3.1. Pointwise mutual information (PMI)

Traditionally, the word-vector representations can be achieved by constructing 
a high-dimensional sparse matrix 𝑀, where each row represents a word 𝑤  in the vo-
cabulary 𝑉𝑊 and each column a context ∈ 𝑉. The cell value 𝑀𝑖𝑗 represents the asso-
ciation between the word 𝑤 𝑖 and the context 𝑐 𝑗. Pointwise mutual information (PMI) 
is a traditional metric to measure this association [Church & Hanks, 1990].
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Good collocation pairs have high PMI because the probability of co-occurrence 
is only slightly lower than the probabilities of occurrence of each word. Conversely, 
a pair of words whose probabilities of occurrence are considerably higher than their 
probability of co-occurrence gets a small PMI score.

𝑃𝑀� (𝑤 , 𝑐 ) =  −∞ if the number of co-occurrence of 𝑤  and 𝑐  equals 0. In order to ad-
dress this, positive PMI (PPMI) is used, in which all negative values are replaced by 0.

It is well-known that PMI (and PPMI) suffers from its bias towards infrequent 
events [Turney & Pantel, 2010]. A rare context 𝑐  that co-occurred with a word 𝑤  even 
once will often lead to relatively high PMI score because (𝑐 ), which is in PMI’s denomi-
nator, is very small. This causes a situation in which the most associated contexts with 
𝑤  are often very rare words.

This problem can be addressed by smoothing variation of PMI. Smoothing con-
text distribution increases the probability of sampling a rare context (𝑃 (𝑐 ) > 𝑃 (𝑐 ) 
when 𝑐  is rare), which reduces the PMI of (𝑤 , 𝑐 ) for any 𝑤  co-occurring with the rare 
context 𝑐 . The smoothed PMI is very effective and consistently improves performance 
across different tasks and methods [Levy, Goldberg, & Dagan, 2015].
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3.2. Singular Value Decomposition (SVD)

The dense low-dimensional vectors can be obtained by applying truncated Sin-
gular Value Decomposition (SVD) [Eckart & Young, 1936]. Formally, SVD of matrix 
𝑀 is factorization of the form 𝑈 · 𝛴 · 𝑉𝑇, where 𝑈 and 𝑉 are orthonormal and 𝛴 is a di-
agonal matrix of eigenvalues in decreasing order. We obtain 𝑀𝑑 =  𝑈𝑑 · 𝛴𝑑 · 𝑉𝑇

𝑑 by keep-
ing only top 𝑑 elements of 𝛴. The high dimensional spare word-vector representations 
of matrix 𝑀 can be substituted by low dimensional dense vectors of 𝑊𝑆𝑉𝐷 and 𝐶𝑆𝑉𝐷 
that represent words and contexts respectively.
    𝑊𝑆𝑉𝐷 =  𝑈𝑑 · 𝛴𝑑, 𝐶𝑆𝑉𝐷 =  𝑉𝑑 (4)

However, word-vector representations of 𝑊𝑆𝑉𝐷 are not necessary the optimal for 
semantic tasks. It was shown that weighting the eigenvalues matrix 𝛴𝑑 can have a sig-
nificant effect on the performance [Levy, Goldberg, & Dagan, 2015].
    𝑊𝑝

𝑆𝑉𝐷 =  𝑈𝑑 · 𝛴𝑝
𝑑  (5)
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4. Word Normalization

Identifying the original forms of words is important for natural language pro-
cessing applications. The goal of normalization is to reduce inflectional forms and 
sometimes derivationally related forms of a word to a common base form, for instance

am, are, is → be 
car, cars, car’s → car

Normalization can involve either lemmatization or stemming.
Stemming usually refers to a crude heuristic process that chops off the ends 

of words, and removal of derivational affixes. As result of the process we get a stem that 
does not have to be a proper word.  Lemmatization usually refers to doing things prop-
erly with the use of a vocabulary and morphological analysis of words, normally aiming 
to remove inflectional endings only and to return the base or dictionary form of a word, 
which is known as the lemma. Therefore stemmers are much simpler, smaller and usu-
ally faster than lemmatizers, and for many applications their results are good enough.

Usually low resource languages lack NLP tools like stemmer/lemmatizer. There 
is no normalizer for Buryat language, however several techniques were proposed for 
Mongolian language [Fujii & Chimeddorj, 2012]. It is extremely important to develop 
normalizer for low resource language in order to alleviate language variability.

4.1. Yet Another Suffix Striper (YASS)

YASS is a statistical corpus-based stemmer that does not rely on linguistic ex-
pertise. It stems by clustering a lexicon without any linguistic input. Its performance 
is comparable to that obtained using standard rule-based stemmers such as Porter’s. 
Information retrieval experiments done on English, French and Bengali datasets 
found YASS very effective [Majumder, et al., 2007].

The clusters are created using hierarchical approach and distance measures. 
Four distance functions 𝐷1, 𝐷2, 𝐷3, 𝐷4 were proposed. The main intuition behind de-
fining these distances was to reward long matching prefixes, and to penalize an early 
mismatch. The 𝐷3 distance function was found to be the most effective, so we focused 
on 𝐷3 solely [Majumder, et al., 2007].

If the strings 𝑋 and 𝑌 are of unequal lengths we pad the shorter string with null 
characters to make the strings lengths equal. The distance 𝐷3 between two strings 
𝑋 =  𝑥0 𝑥1 … 𝑥𝑛 and 𝑌 =  𝑦0 𝑦1 … 𝑦𝑛 is as following
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where 𝑚 denotes the position of the first mismatch between 𝑋 and 𝑌.
The distance function defined above is used to compose a distance matrix. Then 

the distance matrix is used to cluster words. Each cluster is expected to represent 
morphological variants of a single root word. The words within a cluster are stemmed 
to the “central” word in that cluster. 
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Three variants of hierarchical clustering algorithms were tested, namely, single-
linkage, average-linkage and complete-linkage. In single-linkage clustering the simi-
larity between two clusters is the maximal similarity between any two members of the 
groups. Complete-linkage clustering is similar to single-linkage, but instead of maxi-
mal similarity, it considers the minimal similarity between any two members as a clus-
ters similarity. In average-linkage clustering the similarity between two clusters is the 
mean similarity between members of different clusters [Jain, Murty, & Flynn, 1999].

5. Experimental Setup

Section 5.1 describes the Buryat Wikipedia corpus. Section 5.2 specifies the 
methods that were used to learn the word-vector representations. Finally, the evalua-
tion scheme is defined in Section 5.3.

5.1. Corpus

The models were trained on the Buryat Wikipedia, which consist of 1381 articles 
(each one is more than 50 words long). The articles were lower-cased and non-textual 
were removed. In addition, we excluded all words that contain non-Buryat characters. 
As result the corpus contains 406715 words (64403 unique words).

5.2. Training Embeddings

The models were derived using windows of 2, 5, 10 tokens to each side of the focus 
word. For every window size we calculated PMI4 word representations and we learned 
a 50, 100, 500-dimensional representations with SVD, SGNS, CBOW and GloVe methods.

5.3. Evaluation Datasets

Several datasets have been used for evaluating word-vector representations. 
Among them RG [Rubenstein & Goodenough, 1965], WordSim-353 [Finkelstein, et al., 
2001], WS-Sim [Agirre, et al., 2009] and MEN [Bruni, Boleda, Baroni, & Tran, 2012]. 
Each of these datasets consists of word pairs with corresponding similarity scores 
assigned by human annotators. A model is evaluated by assigning a similarity score 
to each pair and calculating the correlation (Spearman’s 𝜌) with the human ranking.

However, these datasets suffer from some common shortcomings they have: as-
sociations of dissimilar words, low inter-rater agreement over the annotators [Hill, 
Reichart, & Korhonen, 2016]. In addition, more fundamental problems were pointed 
out. In some cases the use of rating scales might lead to a variety of annotations bi-
ases. In addition, different relations were rated by the same scale and different target-
words were rated on the same scale, e.g.: (cat, pet) vs. (winter, season). The men-
tioned problems were addressed by the method proposed in [Avraham & Goldberg, 
2016], however this method requires extensive human annotations.

4 To calculate PMI matrices we used COMPOSES by [Baroni, Bernardi, & Zamparelli, 2014]
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We proposed a simple evaluation scheme that was inspired by [Avraham & 
Goldberg, 2016], however it does not require extensive human annotations. In addi-
tion, our evaluation method can be easily adapted to any language. 

In order to evaluate the word-vector representations we picked 32 nouns (hyper-
nyms) with corresponding hyponyms (from two to five for every hypernym). In hy-
pernym-hyponym pairs, the target word (hypernym) with corresponding hyponyms 
were used to measure the positive pairs of the preferred relations, to measure the 
negative pairs we used the target words with hyponyms from the different hypernym. 
To simplify the process, we did not use human annotators to assign similarity scores, 
the similarity between positive pairs was set to 1 and the similarity between negative 
pairs was set to 0.

Finally, as a result we calculated Spearman correlation between gold standard 
0–1 vector and the vector of cosine similarities calculated in accordance to the tested 
model.

6. Results

We begin by identifying the best possible settings for stemmer including cluster-
ing algorithm and a threshold (Section 6.1). Section 6.2 compares the methods for 
learning word-vector representations.

6.1. Word Normalization

To find the best performing combination of clustering method and the thresh-
old 𝛩 we ran number of experiments5. The preliminary results show that complete-
linkage and average-linkage approaches highly outperformed the single-average 
clustering, so we omit results for the single-average clustering.

According to the evaluation scheme there are 88 positive and 82 negative pairs 
for hypernym-hyponym relation.

As a baseline approach for comparison we used PMI. The PMI performance score 
without the stemming was 0.515 for hypernym-hyponym relation. The average-link-
age clustering outperformed the complete-linkage clustering. The average-linkage 
clustering achieves its best results at 𝛩 = 1.5 for hypernym-hyponym relation.

5 The clustering was performed by fastcluster 1.1.24 [Mullner, 2013]
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Fig. 1. Evaluation results for various clustering methods 
and thresholds for hypernym-hyponym relation

6.2. Word-Vector Representations

The performance of the different word embedding methods is in Table 1. Almost 
in all cases bigger window size leads to better results. Stemming (based on average-link-
age with fine-tuned threshold 𝛩) considerably improves word embedding performance.

Table 1. Performance of each method for different settings

Method
win
dim

hypernym-hyponym

2 5 10

PMI no stemming — .517 .510 .528
PMI — .585 .588 .611
PMI smoothed — .555 .571 .599
SVD 50 .638 .663 .690

100 .632 .641 .722
500 .612 .662 .691

W2V CBOW 50 .022 −.006 .042
100 −.003 −.015 .038
500 −.024 −.033 .011

W2V SGNS 50 .064 .146 .293
100 .043 .136 .290
500 .061 .150 .280

GloVe 50 .115 .262 .363
100 .124 .267 .363
500 .127 .267 .390
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Our findings confirm that SGNS outperforms CBOW on small datasets [Mikolov, 
Le, & Sutskever, 2013]. In addition, it justifies that Skip-Grams approach works much 
better on the semantic tasks [Mikolov, Chen, Corrado, & Dean, 2013].

Surprisingly, smoothed variation of PMI (with 𝛼 = 0.75) that was shown to out-
perform traditional PMI on English Wikipedia corpus [Levy, Goldberg, & Dagan, 
2015], lost to traditional PMI when small corpus was used. 

To reduce dimensionality we used SVD factorization on PMI matrices after stem-
ming. As expected, SVD factorization outperformed PMI matrices performance in all 
modes. However, weighted SVD (𝑑 = 0; 0.5) did not improve the performance further. 

Both fails of the count-based methods’ enhancements (smoothed PMI and 
weighted SVD) can be caused by the small size of the dataset.

In addition, traditional count-based methods notably outperformed neural based 
methods in all settings, which contradicts with the results obtained on big datasets 
[Baroni, Dinu, & Kruszewski, 2014].

7. Conclusion and Future Work

In this paper we compared the capabilities of traditional count-based meth-
ods and neural embeddings methods to learn accurate word-vector representations 
in small text corpora (on the case of the Buryat Wikipedia). We found that traditional 
count-based methods outperform neural-based methods when the models are trained 
on small dataset. We believe that word2vec performance decrease in small corpora 
was caused by the fact that neural-based models need a lot of training data in order 
to fit their high number of parameters. 

We found that the tweaks (smoothed PMI and weighted SVD) that were found 
to improve performance on big text corpora [Levy, Goldberg, & Dagan, 2015] did 
not outperform the traditional PMI and SVD in our case. These fails can be caused 
by a small size of the dataset. Therefore, future work should carefully explore the 
influence of the hyperparameters on the quality of the word-vector representations.

We found that language independent stemming approach (with tuned hyperpa-
rameters) can considerably improve word embeddings quality.

In addition, we proposed a coarse but easily reproducible word embedding eval-
uation scheme.

To promote further research, we made our code freely available6.
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6  https://github.com/vaskonov/burvec
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