
 1

Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2018”

Moscow, May 30—June 2, 2018

LEARNING WORD EMBEDDINGS
FOR LOW RESOURCE LANGUAGES:
THE CASE OF BURYAT

Konovalov V. P. (vaskonov@yahoo.com),
Tumunbayarova Z. B. (zhargal@zabgu.ru)
Transbaikal State University, Chita, Russia

Word-vector representations have been extensively studied for rich re-
source languages with large text datasets. However, only a few studies ana-
lyze semantic representations of low resource languages, when only small
corpus is available. In this study we introduce a methodology and compare
techniques to learn semantic representations of low resource languages.
The proposed methodology consists of defining accurate preprocessing
steps, applying language-independent stemmer and learning word-vector
representations. In addition, we propose a simple word embeddings eval-
uation scheme that can be easily adapted to any language. By using this
methodology we learn word-vector representations for Buryat language.
In order to promote further research we make the source code and the re-
sulting word embeddings corpus publicly available.

Keywords: word2vec, word-embeddings, SVD, PMI, GloVe

ВЕКТОРНОЕ ПРЕДСТАВЛЕНИЕ СЛОВ
ДЛЯ МАЛОРЕСУРСНЫХ ЯЗЫКОВ:
НА ПРИМЕРЕ БУРЯТСКОГО ЯЗЫКА

Коновалов В. П. (vaskonov@yahoo.com),
Тумунбаярова Ж. Б. (zhargal@zabgu.ru)
Забайкальский Государственный
Университет, Чита, Россия

Konovalov V. P., Tumunbayarova Z. B.

2

1. Introduction

Using word embeddings is a standard practice in NLP systems, both in shallow
and deep architectures [Goldberg, 2016]. Word embeddings exploits statistical tech-
niques to embed words in a vector space. In this space, words with similar meanings
tend to be located close to each other. These techniques are based on the Harris dis-
tributional hypothesis [Harris, 1954], which says that words in similar contexts have
similar meanings. This statement provides a framework to use semantic relationship
between words. Word embeddings has been used in a wide variety of applications
such as query expansion [Chen & Chen, 2007], building bilingual comparable corpora
[Zhu, Li, Chen, & Yang, 2013], clustering [Di Marco & Navigli, 2013].

Classical count-based methods such as PMI matrices and SVD factorization were
very popular to represent words as vectors. However, recently word2vec approach has
been proposed to represent words as dense vectors by applying neural embedding meth-
ods [Mikolov, Chen, Corrado, & Dean, 2013]. The neural embedding methods are particu-
larly computationally-efficient predictive model for learning word embeddings. It comes
in two types, the Continuous Bag-of-Words model (CBOW) and the Skip-Grams with
Negative Sampling model (SGNS). In this work we answer the question of which model
to choose for low resource languages when only small amounts of data are available.

Word normalization is an important data preprocessing step for learning word-
vector representations. It improves the vectors quality by reducing language variabil-
ity. In order to reduce words to a common base form, most stemmers use the extensive
set of linguistic rules developed for specific language [Porter, 1980]. Usually low re-
source languages lack rule-based stemmers. In this work, we examine to what extend
language independent stemmer can improve word embeddings quality when only
small training data is available.

In addition, we suggest a new scheme for word vector evaluation. We aim
to develop a method that can address the common shortcomings mentioned in [Hill,
Reichart, & Korhonen, 2016], at the same time this methods can be easily reproduc-
ible for any language.

The remainder of the paper is organized as follows. Section 2 gives information
on Buryat language. Then Section 3 provides an overview of the methods for building
word-vector representations. Section 4 describes language independent stemming ap-
proach. Section 5 specifies the experimental setup and describes the evaluation meth-
odology. Finally, Section 6 provides results and comparisons of various word embed-
ding techniques.

2. Buryat language

Buryat language is one of the Mongolic languages. The majority of Buryat speak-
ers live in Russia along the northern border of Mongolia where it is an official language
in the Buryat Republic, Ust-Orda Buryatia and Aga Buryatia. According to the Russian
census of 2002, there are 353,113 native speakers in Russia. In addition, there are at least
100,000 native speakers in Mongolia and the People’s Republic of China as well. There
are regularly published Buryat newspapers, journals, books, films, television and radio

Learning Word Embeddings for Low Resource Languages: the Case of Buryat

 3

programs, however, according to UNESCO report, Buryat is considered to be an endan-
gered language and at risk of disappearing [Janhunen, 2006]. Implementation of NLP
tools is crucial for language preservation and development. The first syntactic treebank
for Buryat language based on the Universal Dependencies was developed in [Badmaeva
& Francis, 2017]. Buryat language has seven cases and two numbers. Its alphabet
is based on the general Cyrillic scripts with three additional letters.

3. Background

There are two major word-vector representation methods: the count-based methods
(PMI matrix, SVD factorization) and the neural embeddings methods (SGNS, CBOW).

The previous results suggest that the new embedding methods consistently out-
perform the traditional methods by a non-trivial margin on many similarity-oriented
tasks [Baroni, Bernardi, & Zamparelli, 2014]. However this result was reported only
for rich resources languages [Altszyler, Sigman, Ribeiro, & Slezak, 2016]. For exam-
ple, the model used in [Baroni, Bernardi, & Zamparelli, 2014] was trained on 2.8 bil-
lion tokens constructed by concatenating ukWaC1, the English Wikipedia2 and the
British National Corpus 3. Unfortunately such big resources are not available for many
languages, including Buryat language.

We strictly follow the notation that was used in [Levy, Goldberg, & Dagan, 2015],
where 𝑤 ∈ 𝑉𝑊 is collection of words and 𝑐 ∈ 𝑉𝐶 their contexts, and 𝑉𝑊 and 𝑉𝐶 are the
word and context vocabularies. The collection of observed word-context pairs Is 𝐷.
The number of times the pair (𝑤 ,) appears in 𝐷 is denoted as #(𝑤 ,𝑐). Then, #(𝑤) =
∑𝑐 ′∈ 𝑉𝑐 #(𝑤 ,𝑐 ′) and #(𝑐) = ∑𝑤 ′∈ 𝑉𝑤 #(𝑤 ′,𝑐) are the number of times 𝑤 and 𝑐 occurred in 𝐷,
respectively.

When words and contexts are embedded in a space of 𝑑 dimensions, each word
𝑤  ∈  𝑉𝑊 is represented as a vector 𝑤 ⃗ ∈ ℝ𝑑 and each context 𝑐 ∈ 𝑉𝐶 is represented as a vec-
tor 𝑐 ⃗ ∈  ℝ𝑑.

In this work we focused on fixed-window bag-of-words contexts, where 𝐷 is ob-
tained by using a corpus 𝑤 1, 𝑤 2, …, 𝑤 𝑛 and defining the contexts of word 𝑤 𝑖 as the
words surrounding it in an 𝐿-sized window 𝑤 𝑖−𝐿, …, 𝑤 𝑖−1, 𝑤 𝑖+1, …, 𝑤 𝑖+𝐿.

Section 3.1 describes the traditional pointwise mutual information method,
which follows by singular values decomposition method in the Section 3.2. In addi-
tion, we examined word embeddings learned by GloVe, SGNS and CBOW methods.
Due to space limitations we omitted their description here. The GloVe (Global vectors
for word representation) method was described in [Pennington, Socher, & Manning,
2014]. The neural based methods SGNS and CBOW were described in [Mikolov, Chen,
Corrado, & Dean, 2013].

1 http://wacky.sslmit.unibo.it

2 http://en.wikipedia.org

3 http://www.natcorp.ox.ac.uk

Konovalov V. P., Tumunbayarova Z. B.

4

3.1. Pointwise mutual information (PMI)

Traditionally, the word-vector representations can be achieved by constructing
a high-dimensional sparse matrix 𝑀, where each row represents a word 𝑤 in the vo-
cabulary 𝑉𝑊 and each column a context ∈ 𝑉. The cell value 𝑀𝑖𝑗 represents the asso-
ciation between the word 𝑤 𝑖 and the context 𝑐 𝑗. Pointwise mutual information (PMI)
is a traditional metric to measure this association [Church & Hanks, 1990].

 𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)
𝑃𝑃(𝑤𝑤)𝑃𝑃(𝑐𝑐)

𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)

𝑃𝑃(𝑤𝑤)𝑃𝑃𝛼𝛼(𝑐𝑐)

𝑃𝑃𝛼𝛼(𝑐𝑐) =
#(𝑐𝑐)𝛼𝛼

∑ #(𝑐𝑐)𝛼𝛼𝑐𝑐

𝐷𝐷3(𝑋𝑋,𝑌𝑌) = �
𝑛𝑛 −𝑚𝑚 + 1

𝑚𝑚
�

1
2𝑖𝑖−𝑚𝑚

𝑛𝑛

𝑖𝑖=𝑚𝑚

 𝑖𝑖𝑖𝑖 𝑚𝑚 > 0

∞ 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

0,47

0,49

0,51

0,53

0,55

0,57

0,59

0,61

0,63

0,5 1 1,5 2 2,5

Pe
rf

or
m

an
ce

Threshold

complete-linkage average-linkage no stemming

 (1)

Good collocation pairs have high PMI because the probability of co-occurrence
is only slightly lower than the probabilities of occurrence of each word. Conversely,
a pair of words whose probabilities of occurrence are considerably higher than their
probability of co-occurrence gets a small PMI score.

𝑃𝑀� (𝑤 , 𝑐) =  −∞ if the number of co-occurrence of 𝑤 and 𝑐 equals 0. In order to ad-
dress this, positive PMI (PPMI) is used, in which all negative values are replaced by 0.

It is well-known that PMI (and PPMI) suffers from its bias towards infrequent
events [Turney & Pantel, 2010]. A rare context 𝑐 that co-occurred with a word 𝑤 even
once will often lead to relatively high PMI score because (𝑐), which is in PMI’s denomi-
nator, is very small. This causes a situation in which the most associated contexts with
𝑤 are often very rare words.

This problem can be addressed by smoothing variation of PMI. Smoothing con-
text distribution increases the probability of sampling a rare context (𝑃 (𝑐) > 𝑃 (𝑐)
when 𝑐 is rare), which reduces the PMI of (𝑤 , 𝑐) for any 𝑤 co-occurring with the rare
context 𝑐 . The smoothed PMI is very effective and consistently improves performance
across different tasks and methods [Levy, Goldberg, & Dagan, 2015].

𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)
𝑃𝑃(𝑤𝑤)𝑃𝑃(𝑐𝑐)

𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)

𝑃𝑃(𝑤𝑤)𝑃𝑃𝛼𝛼(𝑐𝑐)

𝑃𝑃𝛼𝛼(𝑐𝑐) =
#(𝑐𝑐)𝛼𝛼

∑ #(𝑐𝑐)𝛼𝛼𝑐𝑐

𝐷𝐷3(𝑋𝑋,𝑌𝑌) = �
𝑛𝑛 −𝑚𝑚 + 1

𝑚𝑚
�

1
2𝑖𝑖−𝑚𝑚

𝑛𝑛

𝑖𝑖=𝑚𝑚

 𝑖𝑖𝑖𝑖 𝑚𝑚 > 0

∞ 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

0,47

0,49

0,51

0,53

0,55

0,57

0,59

0,61

0,63

0,5 1 1,5 2 2,5

Pe
rf

or
m

an
ce

Threshold

complete-linkage average-linkage no stemming

 (2)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)
𝑃𝑃(𝑤𝑤)𝑃𝑃(𝑐𝑐)

𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)

𝑃𝑃(𝑤𝑤)𝑃𝑃𝛼𝛼(𝑐𝑐)

𝑃𝑃𝛼𝛼(𝑐𝑐) =
#(𝑐𝑐)𝛼𝛼

∑ #(𝑐𝑐)𝛼𝛼𝑐𝑐

𝐷𝐷3(𝑋𝑋,𝑌𝑌) = �
𝑛𝑛 −𝑚𝑚 + 1

𝑚𝑚
�

1
2𝑖𝑖−𝑚𝑚

𝑛𝑛

𝑖𝑖=𝑚𝑚

 𝑖𝑖𝑖𝑖 𝑚𝑚 > 0

∞ 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

0,47

0,49

0,51

0,53

0,55

0,57

0,59

0,61

0,63

0,5 1 1,5 2 2,5

Pe
rf

or
m

an
ce

Threshold

complete-linkage average-linkage no stemming

 (3)

3.2. Singular Value Decomposition (SVD)

The dense low-dimensional vectors can be obtained by applying truncated Sin-
gular Value Decomposition (SVD) [Eckart & Young, 1936]. Formally, SVD of matrix
𝑀 is factorization of the form 𝑈 · 𝛴 · 𝑉𝑇, where 𝑈 and 𝑉 are orthonormal and 𝛴 is a di-
agonal matrix of eigenvalues in decreasing order. We obtain 𝑀𝑑 =  𝑈𝑑 · 𝛴𝑑 · 𝑉𝑇

𝑑 by keep-
ing only top 𝑑 elements of 𝛴. The high dimensional spare word-vector representations
of matrix 𝑀 can be substituted by low dimensional dense vectors of 𝑊𝑆𝑉𝐷 and 𝐶𝑆𝑉𝐷
that represent words and contexts respectively.
 𝑊𝑆𝑉𝐷 =  𝑈𝑑 · 𝛴𝑑, 𝐶𝑆𝑉𝐷 =  𝑉𝑑 (4)

However, word-vector representations of 𝑊𝑆𝑉𝐷 are not necessary the optimal for
semantic tasks. It was shown that weighting the eigenvalues matrix 𝛴𝑑 can have a sig-
nificant effect on the performance [Levy, Goldberg, & Dagan, 2015].
 𝑊𝑝

𝑆𝑉𝐷 =  𝑈𝑑 · 𝛴𝑝
𝑑 (5)

Learning Word Embeddings for Low Resource Languages: the Case of Buryat

 5

4. Word Normalization

Identifying the original forms of words is important for natural language pro-
cessing applications. The goal of normalization is to reduce inflectional forms and
sometimes derivationally related forms of a word to a common base form, for instance

am, are, is → be
car, cars, car’s → car

Normalization can involve either lemmatization or stemming.
Stemming usually refers to a crude heuristic process that chops off the ends

of words, and removal of derivational affixes. As result of the process we get a stem that
does not have to be a proper word. Lemmatization usually refers to doing things prop-
erly with the use of a vocabulary and morphological analysis of words, normally aiming
to remove inflectional endings only and to return the base or dictionary form of a word,
which is known as the lemma. Therefore stemmers are much simpler, smaller and usu-
ally faster than lemmatizers, and for many applications their results are good enough.

Usually low resource languages lack NLP tools like stemmer/lemmatizer. There
is no normalizer for Buryat language, however several techniques were proposed for
Mongolian language [Fujii & Chimeddorj, 2012]. It is extremely important to develop
normalizer for low resource language in order to alleviate language variability.

4.1. Yet Another Suffix Striper (YASS)

YASS is a statistical corpus-based stemmer that does not rely on linguistic ex-
pertise. It stems by clustering a lexicon without any linguistic input. Its performance
is comparable to that obtained using standard rule-based stemmers such as Porter’s.
Information retrieval experiments done on English, French and Bengali datasets
found YASS very effective [Majumder, et al., 2007].

The clusters are created using hierarchical approach and distance measures.
Four distance functions 𝐷1, 𝐷2, 𝐷3, 𝐷4 were proposed. The main intuition behind de-
fining these distances was to reward long matching prefixes, and to penalize an early
mismatch. The 𝐷3 distance function was found to be the most effective, so we focused
on 𝐷3 solely [Majumder, et al., 2007].

If the strings 𝑋 and 𝑌 are of unequal lengths we pad the shorter string with null
characters to make the strings lengths equal. The distance 𝐷3 between two strings
𝑋 =  𝑥0 𝑥1 … 𝑥𝑛 and 𝑌 =  𝑦0 𝑦1 … 𝑦𝑛 is as following

𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)
𝑃𝑃(𝑤𝑤)𝑃𝑃(𝑐𝑐)

𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)

𝑃𝑃(𝑤𝑤)𝑃𝑃𝛼𝛼(𝑐𝑐)

𝑃𝑃𝛼𝛼(𝑐𝑐) =
#(𝑐𝑐)𝛼𝛼

∑ #(𝑐𝑐)𝛼𝛼𝑐𝑐

𝐷𝐷3(𝑋𝑋,𝑌𝑌) = �
𝑛𝑛 −𝑚𝑚 + 1

𝑚𝑚
�

1
2𝑖𝑖−𝑚𝑚

𝑛𝑛

𝑖𝑖=𝑚𝑚

 𝑖𝑖𝑖𝑖 𝑚𝑚 > 0

∞ 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

0,47

0,49

0,51

0,53

0,55

0,57

0,59

0,61

0,63

0,5 1 1,5 2 2,5

Pe
rf

or
m

an
ce

Threshold

complete-linkage average-linkage no stemming

 (6)

where 𝑚 denotes the position of the first mismatch between 𝑋 and 𝑌.
The distance function defined above is used to compose a distance matrix. Then

the distance matrix is used to cluster words. Each cluster is expected to represent
morphological variants of a single root word. The words within a cluster are stemmed
to the “central” word in that cluster.

Konovalov V. P., Tumunbayarova Z. B.

6

Three variants of hierarchical clustering algorithms were tested, namely, single-
linkage, average-linkage and complete-linkage. In single-linkage clustering the simi-
larity between two clusters is the maximal similarity between any two members of the
groups. Complete-linkage clustering is similar to single-linkage, but instead of maxi-
mal similarity, it considers the minimal similarity between any two members as a clus-
ters similarity. In average-linkage clustering the similarity between two clusters is the
mean similarity between members of different clusters [Jain, Murty, & Flynn, 1999].

5. Experimental Setup

Section 5.1 describes the Buryat Wikipedia corpus. Section 5.2 specifies the
methods that were used to learn the word-vector representations. Finally, the evalua-
tion scheme is defined in Section 5.3.

5.1. Corpus

The models were trained on the Buryat Wikipedia, which consist of 1381 articles
(each one is more than 50 words long). The articles were lower-cased and non-textual
were removed. In addition, we excluded all words that contain non-Buryat characters.
As result the corpus contains 406715 words (64403 unique words).

5.2. Training Embeddings

The models were derived using windows of 2, 5, 10 tokens to each side of the focus
word. For every window size we calculated PMI4 word representations and we learned
a 50, 100, 500-dimensional representations with SVD, SGNS, CBOW and GloVe methods.

5.3. Evaluation Datasets

Several datasets have been used for evaluating word-vector representations.
Among them RG [Rubenstein & Goodenough, 1965], WordSim-353 [Finkelstein, et al.,
2001], WS-Sim [Agirre, et al., 2009] and MEN [Bruni, Boleda, Baroni, & Tran, 2012].
Each of these datasets consists of word pairs with corresponding similarity scores
assigned by human annotators. A model is evaluated by assigning a similarity score
to each pair and calculating the correlation (Spearman’s 𝜌) with the human ranking.

However, these datasets suffer from some common shortcomings they have: as-
sociations of dissimilar words, low inter-rater agreement over the annotators [Hill,
Reichart, & Korhonen, 2016]. In addition, more fundamental problems were pointed
out. In some cases the use of rating scales might lead to a variety of annotations bi-
ases. In addition, different relations were rated by the same scale and different target-
words were rated on the same scale, e.g.: (cat, pet) vs. (winter, season). The men-
tioned problems were addressed by the method proposed in [Avraham & Goldberg,
2016], however this method requires extensive human annotations.

4 To calculate PMI matrices we used COMPOSES by [Baroni, Bernardi, & Zamparelli, 2014]

Learning Word Embeddings for Low Resource Languages: the Case of Buryat

 7

We proposed a simple evaluation scheme that was inspired by [Avraham &
Goldberg, 2016], however it does not require extensive human annotations. In addi-
tion, our evaluation method can be easily adapted to any language.

In order to evaluate the word-vector representations we picked 32 nouns (hyper-
nyms) with corresponding hyponyms (from two to five for every hypernym). In hy-
pernym-hyponym pairs, the target word (hypernym) with corresponding hyponyms
were used to measure the positive pairs of the preferred relations, to measure the
negative pairs we used the target words with hyponyms from the different hypernym.
To simplify the process, we did not use human annotators to assign similarity scores,
the similarity between positive pairs was set to 1 and the similarity between negative
pairs was set to 0.

Finally, as a result we calculated Spearman correlation between gold standard
0–1 vector and the vector of cosine similarities calculated in accordance to the tested
model.

6. Results

We begin by identifying the best possible settings for stemmer including cluster-
ing algorithm and a threshold (Section 6.1). Section 6.2 compares the methods for
learning word-vector representations.

6.1. Word Normalization

To find the best performing combination of clustering method and the thresh-
old 𝛩 we ran number of experiments5. The preliminary results show that complete-
linkage and average-linkage approaches highly outperformed the single-average
clustering, so we omit results for the single-average clustering.

According to the evaluation scheme there are 88 positive and 82 negative pairs
for hypernym-hyponym relation.

As a baseline approach for comparison we used PMI. The PMI performance score
without the stemming was 0.515 for hypernym-hyponym relation. The average-link-
age clustering outperformed the complete-linkage clustering. The average-linkage
clustering achieves its best results at 𝛩 = 1.5 for hypernym-hyponym relation.

5 The clustering was performed by fastcluster 1.1.24 [Mullner, 2013]

Konovalov V. P., Tumunbayarova Z. B.

8

𝑃𝑃𝑃𝑃𝑃𝑃(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)
𝑃𝑃(𝑤𝑤)𝑃𝑃(𝑐𝑐)

𝑃𝑃𝑃𝑃𝑃𝑃𝛼𝛼(𝑤𝑤, 𝑐𝑐) = log
𝑃𝑃(𝑤𝑤, 𝑐𝑐)

𝑃𝑃(𝑤𝑤)𝑃𝑃𝛼𝛼(𝑐𝑐)

𝑃𝑃𝛼𝛼(𝑐𝑐) =
#(𝑐𝑐)𝛼𝛼

∑ #(𝑐𝑐)𝛼𝛼𝑐𝑐

𝐷𝐷3(𝑋𝑋,𝑌𝑌) = �
𝑛𝑛 −𝑚𝑚 + 1

𝑚𝑚
�

1
2𝑖𝑖−𝑚𝑚

𝑛𝑛

𝑖𝑖=𝑚𝑚

 𝑖𝑖𝑖𝑖 𝑚𝑚 > 0

∞ 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

0,47

0,49

0,51

0,53

0,55

0,57

0,59

0,61

0,63

0,5 1 1,5 2 2,5

Pe
rf

or
m

an
ce

Threshold

complete-linkage average-linkage no stemming

Fig. 1. Evaluation results for various clustering methods
and thresholds for hypernym-hyponym relation

6.2. Word-Vector Representations

The performance of the different word embedding methods is in Table 1. Almost
in all cases bigger window size leads to better results. Stemming (based on average-link-
age with fine-tuned threshold 𝛩) considerably improves word embedding performance.

Table 1. Performance of each method for different settings

Method
win
dim

hypernym-hyponym

2 5 10

PMI no stemming — .517 .510 .528
PMI — .585 .588 .611
PMI smoothed — .555 .571 .599
SVD 50 .638 .663 .690

100 .632 .641 .722
500 .612 .662 .691

W2V CBOW 50 .022 −.006 .042
100 −.003 −.015 .038
500 −.024 −.033 .011

W2V SGNS 50 .064 .146 .293
100 .043 .136 .290
500 .061 .150 .280

GloVe 50 .115 .262 .363
100 .124 .267 .363
500 .127 .267 .390

Learning Word Embeddings for Low Resource Languages: the Case of Buryat

 9

Our findings confirm that SGNS outperforms CBOW on small datasets [Mikolov,
Le, & Sutskever, 2013]. In addition, it justifies that Skip-Grams approach works much
better on the semantic tasks [Mikolov, Chen, Corrado, & Dean, 2013].

Surprisingly, smoothed variation of PMI (with 𝛼 = 0.75) that was shown to out-
perform traditional PMI on English Wikipedia corpus [Levy, Goldberg, & Dagan,
2015], lost to traditional PMI when small corpus was used.

To reduce dimensionality we used SVD factorization on PMI matrices after stem-
ming. As expected, SVD factorization outperformed PMI matrices performance in all
modes. However, weighted SVD (𝑑 = 0; 0.5) did not improve the performance further.

Both fails of the count-based methods’ enhancements (smoothed PMI and
weighted SVD) can be caused by the small size of the dataset.

In addition, traditional count-based methods notably outperformed neural based
methods in all settings, which contradicts with the results obtained on big datasets
[Baroni, Dinu, & Kruszewski, 2014].

7. Conclusion and Future Work

In this paper we compared the capabilities of traditional count-based meth-
ods and neural embeddings methods to learn accurate word-vector representations
in small text corpora (on the case of the Buryat Wikipedia). We found that traditional
count-based methods outperform neural-based methods when the models are trained
on small dataset. We believe that word2vec performance decrease in small corpora
was caused by the fact that neural-based models need a lot of training data in order
to fit their high number of parameters.

We found that the tweaks (smoothed PMI and weighted SVD) that were found
to improve performance on big text corpora [Levy, Goldberg, & Dagan, 2015] did
not outperform the traditional PMI and SVD in our case. These fails can be caused
by a small size of the dataset. Therefore, future work should carefully explore the
influence of the hyperparameters on the quality of the word-vector representations.

We found that language independent stemming approach (with tuned hyperpa-
rameters) can considerably improve word embeddings quality.

In addition, we proposed a coarse but easily reproducible word embedding eval-
uation scheme.

To promote further research, we made our code freely available6.

8. Acknowledgements

We thank Anton Alexeev, Anna Potapenko, Andrey Kutuzov and Dmitry Ustalov
for their assistance and contribution.

6 https://github.com/vaskonov/burvec

Konovalov V. P., Tumunbayarova Z. B.

10

References

1. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Pacsca, M., Soroa, A..., et al.
(2009). A study on similarity and relatedness using distributional and wordnet-
based approaches. Proceedings of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of the Association for Computa-
tional Linguistics, 19–27.

2. Altszyler, E., Sigman, M., Ribeiro, S., & Slezak, D. F. (2016). Comparative study
of LSA vs Word2vec embeddings in small corpora: a case study in dreams data-
base. arXiv preprint arXiv:1610.01520.

3. Avraham, O., & Goldberg, Y. (2016). Improving reliability of word similarity eval-
uation by redesigning annotation task and performance measure. arXiv preprint
arXiv:1611.03641.

4. Badagarov, J., Trosterud, T., & Tyers, F. (2016). Language Documentation and
Language Technologies for Circumpolar Region.

5. Badmaeva, E., & Francis, T. (2017). A Dependency Treebank for Buryat. TLT, 1–17.
6. Baroni, M., Bernardi, R., & Zamparelli, R. (2014). Frege in space: A program of com-

positional distributional semantics. Linguistic Issues in Language Technology.
7. Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic

comparison of context-counting vs. context-predicting semantic vectors. Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics, 238–247.

8. Bruni, E., Boleda, G., Baroni, M., & Tran, N.-K. (2012). Distributional semantics
in technicolor. Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1, 136–145.

9. Chen, L.-Y., & Chen, S.-M. (2007). A new approach for automatic thesaurus con-
struction and query expansion for document retrieval. International Journal
of Information and Management Sciences.

10. Church, K. W., & Hanks, P. (1990). Word association norms, mutual information,
and lexicography. Computational linguistics, 22–29.

11. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., & Harshman, R. (1990). In-
dexing by latent semantic analysis. Journal of the American society for informa-
tion science.

12. Di Marco, A., & Navigli, R. (2013). Clustering and diversifying web search results
with graph-based word sense induction. Computational Linguistics, 709–754.

13. Eckart, C., & Young, G. (1936). The approximation of one matrix by another
of lower rank. Psychometrika, 211–218.

14. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., et al.
(2001). Placing search in context: The concept revisited. Proceedings of the 10th
international conference on World Wide Web, 406–414.

15. Fujii, O., & Chimeddorj, A. (2012). Enhancing Lemmatization for Mongolian and
its Application to Statistical Machine Translation. 24th International Conference
on Computational Linguistics, 115.

16. Goldberg, Y. (2016). A Primer on Neural Network Models for Natural Language
Processing. Journal of Artificial Intelligence Research, 345–420.

17. Harris, Z. (1954). Distributional structure. Word, 146–162.

Learning Word Embeddings for Low Resource Languages: the Case of Buryat

 11

18. Hill, F., Reichart, R., & Korhonen, A. (2016). Simlex-999: Evaluating semantic
models with (genuine) similarity estimation. Computational Linguistics.

19. Jain, A., Murty, N., & Flynn, P. (1999). Data clustering: a review. ACM computing
surveys, 264–323.

20. Janhunen, J. (2006). The Mongolic Languages.
21. Jivani, A. G. (2011). A comparative study of stemming algorithms. Int. J. Comp.

Tech. Appl, 1930–1938.
22. Khaltar, B.-O., & Fujii, A. (2008). A Lemmatization Method for Modern Mongo-

lian and its Application to Information Retrieval. IJCNLP, 1–8.
23. language, B. (2017). Buryat language—Wikipedia, The Free Encyclopedia. Re-

trieved from Wikipedia: https://en.wikipedia.org/wiki/Buryat_language
24. Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. ACL, 302–308.
25. Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving distributional similarity

with lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 211–225.

26. Majumder, P., Mitra, M., Parui, S., Kole, G., Mitra, P., Datta, K..., et al. (2007). YASS:
Yet another suffix stripper. ACM transactions on information systems (TOIS), 18.

27. Marco, B., Georgiana, D., & German, K. (2014). Don’t count, predict! A systematic
comparison of context-counting vs. context-predicting semantic vectors. ACL.

28. Melamud, O., McClosky, D., Patwardhan, S., & Bansal, M. (2016). The role of con-
text types and dimensionality in learning word embeddings. arXiv preprint
arXiv:1601.00893.

29. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

30. Mikolov, T., Le, Q., & Sutskever, I. (2013). Exploiting similarities among lan-
guages for machine translation. arXiv preprint arXiv:1309.4168.

31. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances
in neural information processing systems, 3111--3119.

32. Mullner, D. (2013). fastcluster: Fast hierarchical, agglomerative clustering rou-
tines for R and Python. Journal of Statistical Software, 1–18.

33. Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word
representation. Proceedings of the 2014 conference on empirical methods in nat-
ural language processing, 1532–1543.

34. Porter, M. (1980). An algorithm for suffix stripping. Program, 130–137.
35. Rubenstein, H., & Goodenough, J. (1965). Contextual correlates of synonymy.

Communications of the ACM, 627–633.
36. Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations

by back-propagating errors. Nature, 60–88.
37. Turney, P., & Pantel, P. (2010). From frequency to meaning: Vector space models

of semantics. Journal of artificial intelligence research, 141–188.
38. Utsumi, A. (2014). A semantic space approach to the computational semantics

of noun compounds. Natural Language Engineering, 185–234.
39. Zhu, Z., Li, M., Chen, L., & Yang, Z. (2013). Building Comparable Corpora Based

on Bilingual LDA Model. ACL, 278–282.

	Konovalov V. P.; Tumunbayarova Z. B.: Learning Word Embeddings for Low Resource Languages
	Introduction
	Buryat language
	Background
	Pointwise mutual information (PMI)
	Singular Value Decomposition (SVD)

	Word Normalization
	Yet Another Suffix Striper (YASS)

	Experimental Setup
	Corpus
	Training Embeddings
	Evaluation Datasets

	Results
	Word Normalization
	Word-Vector Representations

	Conclusion and Future Work
	Acknowledgements
	References

