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Nowadays a new yet powerful tool for drug repurposing and hypothesis
generation emerged. Text mining of different domains like scientific libraries
or social media has proven to be reliable in that application. One particular
task in that area is medical concept normalization, i.e. mapping a disease
mention to a concept in a controlled vocabulary, like Unified Medical Lan-
guage System (UMLS). This task is challenging due to the differencesin lan-
guage of health care professionals and social media users. To bridge this
gap, we developed end-to-end architectures based on bidirectional Long
Short-Term Memory and Gated Recurrent Units. In addition, we combined
an attention mechanism with our model. We have done an exploratory study
on hyperparameters of proposed architectures and compared them with the
effective baseline for classification based on convolutional neural networks.
A qualitative examination of the mentions in user reviews dataset collected
from popular online health information platforms as well as quantitative one
both show improvements in the semantic representation of health-related
expressions in user reviews about drugs.
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1. Introduction

There were many novel applications of Natural Language Processing (NLP)
to biomedical information in recent years. Most of researchers’ attention attracts task
of Named Entity Recognition (NER). Many applications of NER have been applied
to scientific literature and electronic health records. And comparatively little work
was carried out on social media texts of individuals undergoing medical treatment.

Social media in recent years had become a virtually inexhaustible source of peo-
ple’s opinions on the wide variety of topics. In this work, our focus is patients’ opinions
ondrug effects, i.e. patients’ reports. Progressive improvement of text mining approaches
applied to patient reports in social media by the terms of accuracy and recall has multi-
plicative effect on several areas including pharmacovigilance (especially, for new drugs),
drug repurposing, and understanding drug effects in the context of important and yet
not well studied other factors such as concurrent use of other drugs, diet, and lifestyle.

We study the patients’ comments on social media in an aspect of discovering dis-
ease-related medical concepts from. In the context of this problem, we map a text written
in the informal language of social media (e.g. “I can’t fall asleep all night” or “head spin-
ning a little”) to formal medical language (e.g. “insomnia” and “dizziness” respectively).

This goes beyond simple straightforward matching of natural language expressions
with vocabulary elements: string matching approaches may not be able to link the social
media language to the medical concepts due to few or an absence of overlapping words.
We call the task of mapping everyday life language to medical terminology medical con-
cept normalization (or medical concept mapping). The main benefit of solving this task
is bridging the gap between the language of lay public and medical professionals.

The described task seems to be uneasy since patients post in social media texts
on different illness concepts (a wide variety of one’s from conditions like major depres-
sive disorder to informal phrases describing specific symptoms such as “woke up too
early” or “mucus building up in my lungs”) and a wide diversity of drug reactions (e.g.,
“excessive sweating at night”, “slept like a baby”, or “clearing up an infection”). Also,
we should mention that the data from social networks typically contain a lot of noise
such as typos, misspellings, incorrect grammar, hashtags, abbreviations, and differ-
ent variations of the same word.

Formally speaking, this task is related to several well-known NLP challenges
including paraphrase detection, word sense disambiguation, and entity linking
where an entity mention is mapped to a unique concept in an ontology after solving
the disambiguation problem [1, 2]. In recent studies, there were proposed some ap-
proaches to this challenge treating the task of linking a one- or multi-word expression
to a knowledge base as a supervised sequence labeling problem. Miftahutdinov and
Tutubalina [3] proposed an encoder-decoder model based on bidirectional recurrent
neural networks (RNNs) to translate a sequence of words from a death certificate
into a sequence of medical codes. Two recent works present similar approaches [4, 5]
that utilize RNNs for normalization of tweets’ phrases at the AMIA 2017 Social Me-
dia Mining for Health Applications workshop, while Limsopatham and Collier [6] ex-
perimented with convolutional neural networks (CNNs) on social media data. These
works demonstrated usage of deep learning techniques for medical concept normal-
ization. In this paper, we experimented with more complex RNN architectures with
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an attention mechanism and additional linguistic knowledge. Moreover, we study the
impact of different word embeddings. We conduct extensive experiments on a real-
life dataset from Askapatient.com and demonstrate the effectiveness of the proposed
method for medical concept mapping.

2. Background

The most popular knowledge-based system for mapping texts from scientific lit-
erature and clinical records to medical identifiers are MetaMap [7] and DNorm [8].
MetaMap was developed by the National Library of Medicine (NLM) in 2001 and
has become a de-facto baseline method for many recent studies. This system is based
on UMLS and a linguistic approach using lexical lookup and variants by associating
a score with phrases in a sentence. Leaman et al. introduced a DNorm system for as-
signing disease mentions from PubMed abstracts a unique identifier from a MEDIC
vocabulary, which combines terminology from Medical Subject Headings (MeSH)
and Online Mendelian Inheritance in Man (OMIM) [8]. DNorm consists of a text
processing pipeline, including the named entity recognizer to locate diseases in the
text, and a normalisation method. The normalisation method is based on a pairwise
learning-to-rank technique using the tokens from all mentions as features. DNorm
outperformed MetaMap as the baseline.

While there has been a lot of work on named entity recognition from social me-
dia posts that has been done over the past 7 years [5, 9, 10, 11, 12, 13, 14, 15, 16],
relatively few researchers have looked at assigning social media phrases to medical
identifiers. First Social Media Mining shared task workshop (organized as part of the
Pacific Symp. on Biocomputing 2016) was designed to mining pharmacological and
medical information from social media, with a competition based on a published da-
taset [13]. Task 3 is devoted to medical concept normalisation, where participants
were required to identify the UMLS concept for a given ADR. The evaluation set con-
sisted of 476 ADR instances. Sarker et al. [ 13] noted that there had been no prior work
on normalisation of concepts expressed in social media texts, and task 3 did not at-
tract much attention from the researchers.

Recently, two teams namely UKNLP [4] and gnTeam [5] participated in the
Second Social Media Mining for Health (SMM4H) Shared Task and submitted their
systems for automatic normalisation of ADR mentions to MedDRA concepts. For the
task 3, Sarker et al. [17] created a new dataset of tweets’ phrases. The training set
for this task contains 6,650 phrases mapped to 472 concepts, while the testing set
consisted of 2,500 phrases mapped to 254 classes. We also note that organizers of this
task did not describe the corpus creation in details as well as not providing corpus sta-
tistics, e.g., the overlap percentage between training and testing sets. Teams’ systems
showed similar results. The gnTeam’s approach contained three components for pre-
processing and classification. The first two components corrected spelling mistakes
and converted sentences into vector-space representation, respectively. For the third
step, GnTeam adopted multinomial logistic regression model which achieved the ac-
curacy of 0.877, while the bidirectional GRU achieved the accuracy of 0.855. As input,
the network adopted the GoogleNews embeddings trained on a Google News corpus
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due to higher results the highest performance over embeddings trained on tweets.
The ensemble of both classifiers showed slightly better performance and achieved the
accuracy of 0.885. The UKNLP’s system adopted hierarchical LSTM in which a phrase
is segmented into words and each word is segmented into characters. Word embed-
dings were trained on a Twitter corpus. Hierarchical Char-LSTM achieved the accu-
racy of 0.872, while hierarchical Char-CNN performed slightly better and achieved
the accuracy of 0.877. We note this corpus of tweets for future work since the official
test data is available for the shared task participants only by the time of publication.

Recently, Limsopatham and Collier [6] experimented with Convolutional Neural
Networks (CNN) and pre-trained word embeddings for mapping social media texts
to medical concepts. For evaluation, three different datasets were used. The authors
created two datasets with 201 and 1,436 Twitter phrases which mapped to concepts
from a SIDER database. The third dataset is the CSIRO Adverse Drug Event Corpus (CA-
DEC) [2] which consists of user reviews from askapatient.com. The authors observed that
training can be effectively achieved at 40-70 epochs. As input, the network concatenated
embeddings of words. The GoogleNews embeddings improved results significantly over
embeddings on medical articles. Experiments showed that CNN (accuracy 81%) outper-
formed DNorm (accuracy 73%), RNN (accuracy 80%) and a multi-class logistic regres-
sion (accuracy 77%) on the AskAPatient corpus (as well as corpora of tweets). This work
is the closest to ours in the use of deep learning technology and semantic representation
of words. However, we found that only approximately 40% of expressions in the test
data are unique, while the rest of expressions occur in the training data. Therefore, the
presented accuracy may be too optimistic. We believe that future research should focus
on developing extrinsic test sets for medical concept normalisation.

3. Methods

In this section, we will discuss major challenges in this task and applied neural
architectures.

3.1. Recognition of Different Word Variances

The task of medical concept normalisation is closely related to the problem
of word sense disambiguation and terminological variance. There are major chal-
lenges which disease mention recognition methods as well as term extraction meth-
ods face:

(i) exical, morphological, and syntactic variants;

(i) paraphrases, synonyms;

(iii) abbreviations;

(iv) ambiguity;

(v) misspellings.

The examples of three-form phrases from the CADEC corpus are presented in
Table 1.
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Table 1. Examples of three-form phrases with
corresponding medical concepts

Free-form Phrases Medical concept SNOMED ID

lower pelvic pain Pain in pelvis 30473006
uterus contractions Uterine spasm 29542008
something wrong with my uterus Uterus problem 289621007
stomach issues Stomach problem 300306001
slightly heavier menstrual cycle Menorrhagia 386692008
inflammation in my back muscles Muscle cramp 55300003
inflammation in my neck Cervical arthritis 387801000
heavy menstrual bleeding Menorrhagia 386692008
acidic bile in my mouth Acid reflux 698065002
could only walk less than 100 meters | Reduced mobility 8510008
very painful joints Arthralgia 57676002
starting to upset my stomach Stomach ache 271681002
can't sleep Insomnia 193462001
high BP Increased venous pressure 69791001
pulse is still extremely high Pulse fast 86651002

3.2. Proposed Model for Concept Mapping

We propose a deep approach for mapping entity mentions to medical codes.
We first convert each mention into a semantic representative vector using bidirec-
tional LSTM or GRU [18-23] with attention mechanism on top of the embedding
layer. We use the hyperbolic tangent as activation function. Then, a set of features
are extracted using the cosine similarity between mentions and medical concepts
from the UMLS Metathesaurus. For model training, we use the cross-entropy error
between gold distribution and predicted distribution as the loss function. The model

is depicted in Fig. 1.
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Figure 1: Proposed architecture for medical concept normalization
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3.3. Semantic Similarity Features

We extract a set of features to enhance the representation of the phrases. These
features consist of cosine similarity between the vectors of the input phrase and a con-
cept in a medical terminology dictionary. This dictionary includes medical codes and
synonyms from the UMLS Metathesaurus (version 2017 AA), where codes are pre-
sented in the CADEC corpus. We apply the following strategy to create representations
of a concept and a mention and compute cosine similarity between the representa-
tions of each pair: present a medical code as a single document by concatenating syn-
onymous terms. Then, we apply the TF-IDF transformation on the code and the entity
mention and compute the cosine similarity.

Neural networks require word representations as inputs. We investigate the use
of several different pre-trained word embeddings. Recent advances have made distrib-
uted word representations into a method of choice for modern NLP [24, 25, 26]. We uti-
lize word embeddings named HealthVec, which are publicly available 200-dimensional
embeddings that were trained on 2,607,505 unlabeled user comments (93,526 terms)
from health information websites using the CBOW model in [14]. We also experi-
mented with another published 200-dimensional embeddings named PubMedVec
(2,351,706 terms) trained on biomedical literature indexed in PubMed [27].

4. Experimental Evaluation

The purpose of our evaluation is to determine how well recurrent neural net-
works can identify the corresponding medical concepts based on informal language
from patients’ texts.

4.1. Data Set

We conducted experiments on a collection of user reviews obtained from the
CADEC corpus [2]. This corpus contains 1,250 reviews and consists of four predefined
disease-related types: ADR (6,318 entities), Disease (283 entities), Symptom (275 en-
tities), and Clinical Finding (435 entities). Authors reported that only 39.4% of the
annotations (including drugs) were unique; people generally discussed similar reac-
tions. Disease and Symptom specify the reason for taking the drug. Patients may men-
tion the name of a disease or the symptoms that led to them taking a drug. Findings
are any adverse side effects, diseases, or symptoms that were not directly experienced
by the reporting patient. We did not distinguish between these types and join them
into one class of annotations named Disease.

All entities in the CADEC corpus were mapped to SNOMED CT-AU (SCT-AU)
by a clinical terminologist. SNOMED CT is a clinical terminology that provides codes,
synonyms, and definitions of clinical terms, and can be accessed through the UMLS
Metathesaurus. Additionally, concepts identified in the SNOMED CT were associated
with MedDRA identifiers. In this work, we adopted only SNOMED CT identifiers and
removed ‘concept less’ or ambiguous mentions for evaluation purpose. Table 2 shows
final statistics for the CADEC corpus. The total number of unique codes was 1,029.



Leveraging Deep Neural Networks and Semantic Similarity Measures

Table 2: Statistics of the dataset used in the experiments

Entity type Total Unique phrases Unique SNOMED codes
ADR 5,838 3,241 788
Disease 266 165 108
Drug 1,657 290 124
Finding 399 270 180
Symptom 251 128 78

4.2. Preprocessing and Experiment Settings

Preprocessing includes spelling correction and lemmatization using the Natu-
ral Language Toolkit (NLTK). We performed a 5-fold cross-validation to evaluate the
methods. We found that a standard cross-validation method creates a high overlap
of expressions in an exact matching between training and testing parts. Therefore,
the split procedure has a specific feature in our setup. First, we removed all dupli-
cates in each dataset. Second, we grouped medical records into sets which are related
to a specific medical code. Every such set was split independently into k folds, and all
these folds were merged into final k folds. The created folds are publicly available!.

4.3. Baseline System

For comparison, we applied state-of-the-art baselines based on convolutional
neural networks. In [6], experiments showed that CNN outperformed existing strong
baselines such as DNorm and Logistic Regression. In order to obtain local features
from a text with CNNs, we used multiple filters of different lengths [28].

4.4. Model Configuration and Training

Since neural networks, especially deep neural networks, have a very large num-
ber of free parameters, problems with overfitting are inevitable, and some form of reg-
ularization is required. We used a dropout rate [29] of 0.5 after the embedding layer
(before networks’ layers).

Another standard technique in modern deep learning, batch normalisation [30],
was designed to cope with a problem known as covariate shift. For all networks, we set
the mini-batch size to 128 to minimize the negative log-likelihood of correct predictions.

The last important set of advances deal with actually training the model. We used
a popular adaptive gradient descent variations, Adam [31]. Embedding layers are
trainable for all networks. The number of outputs of the layer with the softmax acti-
vation equals to the number of unique concept codes. Additionally, we separated out
10% of the training set to form the validation set which was used to evaluate differ-
ent model parameters. The number of epochs is determined by early stopping on the
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validation set. We employed early stopping after two epochs with no improvement
on the validation set. The final number of epochs is 15.

For RNN, we utilized either a 100- or 200-dimensional hidden layer for each
RNN chain. For CNN, we adopted effective parameters from [28, 6]. We used the filter
w with the window size h of [3, 4, 5], each of which had 100 feature maps. Pooled
features were fed to a fully connected feed-forward neural network (with dimension
100) to make an inference, using rectified linear units as output activation.

We found 91% and 88% of words from the CADEC corpus vocabulary in the word
embeddings HealthVec and PubMedVec, respectively. For other words, their represen-
tations were uniformly sampled from the range of embedding weights [32].

4.5. Results

The standard technique for evaluating concept normalisation is to compare cor-
rectly normalised disorder mentions against the gold standard entities [7, 33]. Accu-
racy which is defined as follows:

NCOTTeEt
Accuracy = - (@)

g
where N is the number of correctly normalised disorder mentions and T is the
total number of disorder mentions in the gold standard.We present the experimental
results of neural networks in Table 3. The attention-based GRU with UMLS-based fea-

tures achieved an accuracy of 69.92%.

Table 3: The accuracy performance of neural networks

Model Parameters Accuracy
CNN HealthVec, 100 feature maps 46.19
CNN PubMedVec, 100 feature maps 45.79
LSTM HealthVec, 200 hidden units 64.51
LSTM PubMedVec, 200 hidden units 64.24
GRU HealthVec, 200 hidden units 63.05
GRU PubMedVec, 200 hidden units 62.73
LSTM+Attention HealthVec, 200 hidden units 65.73
LSTM+Attention HealthVec, 100 hidden units 64.83
GRU+Attention HealthVec, 200 hidden units 67.08
with semantic similarity features

LSTM+Attention HealthVec, 100 units, similarity TF-IDF 67.63
LSTM+Attention HealthVec, 200 units, similarity TF-IDF 66.83
GRU+Attention HealthVec, 100 units, similarity TF-IDF (ALL) 69.92
GRU+Attention HealthVec, 200 units, similarity TF-IDF (ALL) 69.42

The best results were obtained while using vectors trained on social media posts.
GRU consistently outperformed CNNs and LSTM in terms of accuracy. Attention
mechanism and prior knowledge from the UMLS Metathesaurus indeed led to quality
improvements for both GRU and LSTM.

oo
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5. Conclusion

In this work, we have demonstrated that RNN-based architectures, LSTM- and GRU-
based in particular, have promising performance on the task of medical concept normal-
ization of free text mentions in social media. The experiments have shown qualitative
and quantitative improvement over a strong baseline. We see three possible ways to next
research to improve and expand the achieved results. The natural way to extend our mod-
els is to integrate a linguistic knowledge into them. We plan to concatenate RNN’s output
with a semantic similarity vector. We might focus on the development of extrinsic test sets
for medical concept normalization. This future work looks promising also in consider-
ation of paraphrase generation and other encoder-decoder applicable tasks.
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