Using Context Features for Morphological Analysis of Russian

Alexey Sorokin1,2, Ekaterina Yankovskaya1

1Moscow State University, 2Moscow Institute of Science and Technology

“Dialogue”, International Conference on Computational Linguistics,
Moscow, June, 1st, 2017
POS-tagging for English

- Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
- High results due to relatively simple morphology (≈ 97.5% on WSJ).

Problems with traditional approaches:
- HMM do not decompose tags and uses only 2 previous words. Though simple to implement and fast.
- CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.
- Constraint-based approach do not handle complex cases or require too much labor.
- Neural networks... Hmm, they were not tested.

Even if neural networks work well we do not know why. Let's do some linguistics instead.
POS-tagging for Russian and English

- **POS-tagging for English**
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology (≈ 97.5% on WSJ).
- **POS-tagging for Russian: problems with traditional approaches**
 - HMM do not decompose tags and uses only 2 previous words. Though simple to implement and fast.
POS-tagging for Russian and English

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology (≈ 97.5% on WSJ).
- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words. Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.

- Even if neural networks work well we do not know why. Let’s do some linguistics instead.
POS-tagging for Russian and English

- **POS-tagging for English**
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology ($\approx 97.5\%$ on WSJ).
- **POS-tagging for Russian**: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words. Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.
 - And in Russian we need history of arbitrary length.

- Even if neural networks work well we do not know why. Let’s do some linguistics instead.
POS-tagging for Russian and English

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology ($\approx 97.5\%$ on WSJ).
- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words. Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.
 - And in Russian we need history of arbitrary length.
 - Constraint-based approach do not handle complex cases or require too much labour.

- Even if neural networks work well we do not know why. Let’s do some linguistics instead.

Alexey Sorokin, Ekaterina Yankovskaya

Moscow State University, Moscow Institute of Science and Technology

Using Context Features for Morphological Analysis of Russian
POS-tagging for Russian and English

- POS-tagging for English
 - Plenty of systems and approaches: HMM, CRF, dependency networks, neural networks, combinations of approaches...
 - High results due to relatively simple morphology (≈ 97.5% on WSJ).

- POS-tagging for Russian: problems with traditional approaches
 - HMM do not decompose tags and uses only 2 previous words. Though simple to implement and fast.
 - CRF do decompose tags but creates too much features. History of length 2 is already problematic to handle.
 - And in Russian we need history of arbitrary length.
 - Constraint-based approach do not handle complex cases or require too much labour.
 - Neural networks. Hmm, they were not tested.
 - Even if neural networks work well we do not know why. Let’s do some linguistics instead.
Common ambiguities in Russian:

- Nominative vs accusative for nouns and adjectives.
- Genitive vs accusative for nouns and adjectives.
Common ambiguities in Russian:
- Nominative vs accusative for nouns and adjectives.
- Genitive vs accusative for nouns and adjectives.
- Short adjectives vs adverbs.
- “что” — a pronoun or a conjunction?
Common ambiguities in Russian:
- Nominative vs accusative for nouns and adjectives.
- Genitive vs accusative for nouns and adjectives.
- Short adjectives vs adverbs.
- “что” — a pronoun or a conjunction?

How we may process it:
- A nominative is usually a subject.
- Accusative often follows a transitive verb being its direct object.
- Adjectives and nouns agree in case, gender and number.
Common ambiguities in Russian:
- Nominative vs accusative for nouns and adjectives.
- Genitive vs accusative for nouns and adjectives.
- Short adjectives vs adverbs.
- “чтo” — a pronoun or a conjunction?

How we may process it:
- A nominative is usually a subject.
- Accusative often follows a transitive verb being its direct object.
- Adjectives and nouns agree in case, gender and number.
- Short adjective is usually a predicate etc.
Common ambiguities in Russian:
- Nominative vs accusative for nouns and adjectives.
- Genitive vs accusative for nouns and adjectives.
- Short adjectives vs adverbs.
- “что” — a pronoun or a conjunction?

How we may process it:
- A nominative is usually a subject.
- Accusative often follows a transitive verb being its direct object.
- Adjectives and nouns agree in case, gender and number.
- Short adjective is usually a predicate etc.

Let’s extract features reflecting whether these constraints are satisfied.
Linguistics for computational morphology

- Common ambiguities in Russian:
 - Nominative vs accusative for nouns and adjectives.
 - Genitive vs accusative for nouns and adjectives.
 - Short adjectives vs adverbs.
 - “чтo” — a pronoun or a conjunction?
- How we may process it:
 - A nominative is usually a subject.
 - Accusative often follows a transitive verb being its direct object.
 - Adjectives and nouns agree in case, gender and number.
 - Short adjective is usually a predicate etc.
- Let’s extract features reflecting whether these constraints are satisfied.
- These features are “soft constraints”.

Alexey Sorokin, Ekaterina Yankovskaya

* Moscow State University, # Moscow Institute of Science and Technology

Using Context Features for Morphological Analysis of Russian
Soft constraints

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.

Soft constraint: let us count a number of transitive verbs followed by a direct object.
Soft constraints

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.
- Hard constraint often fail:
 - рассказал сказку vs рассказал друзьям о себе.
 - Думал уйти vs Думал о погоде.

Soft constraint: let us count a number of transitive verbs followed by a direct object. That would be a strong positive feature.
Soft constraints

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.
- Hard constraint often fail:
 - Рассказал сказку vs рассказал друзьям о себе.
 - Думал уйти vs Думал о погоде.
- Soft constraint: let us count a number of transitive verbs followed by a direct object.
Soft constraints

- Hard constraint: a full adjective must be coordinated with some noun. These two words agree in case, gender and number.
- Hard constraint: a transitive verb must be followed or preceded by a direct object.
- Hard constraint often fail:
 - Покажу картину vs показал друзьям о себе.
 - Думал уйти vs Думал о погоде.
- Soft constraint: let us count a number of transitive verbs followed by a direct object.
- That would be a strong positive feature.
Feature inventory

9 groups of features:
- Adjective coordination.
- Determiner coordination.
- Preposition government.
Feature inventory

9 groups of features:

- Adjective coordination.
- Determiner coordination.
- Preposition government.
- Verb government.
- Nominative features.
- Accusative features.
Feature inventory

9 groups of features:

- Adjective coordination.
- Determiner coordination.
- Preposition government.
- Verb government.
- Nominative features.
- Accusative features.
- Noun-noun features.
- Noun-and-noun features.
- Noun-comma-noun features.
Examples of features: adjectives.

Adjectives:
- Number of adjectives.
- Number of adjectives, coordinated with nouns to the right side.
- Number of adjectives, coordinated with nouns to the left side.
- Indicator for non-coordinated adjectives presence.
Examples of features: adjectives.

- **Adjectives:**
 - Number of adjectives.
 - Number of adjectives, coordinated with nouns to the right side.
 - Number of adjectives, coordinated with nouns to the left side.
 - Indicator for non-coordinated adjectives presence.

- **Determiners:** the same as adjectives.
Examples of features: adjectives.

- **Adjectives:**
 - Number of adjectives.
 - Number of adjectives, coordinated with nouns to the right side.
 - Number of adjectives, coordinated with nouns to the left side.
 - Indicator for non-coordinated adjectives presence.

- **Determiners:** the same as adjectives.

- **Prepositions:**
 - Number of prepositions.
 - Number of prepositions, coordinated with nouns in case.
 - Indicator of non-coordinated prepositions presence.
Examples of features: verb government

- For every verb lemma we collect the counts of following noun group cases.
- For every verb lemma we collect the counts of following preposition group cases.
Examples of features: verb government

- For every verb lemma we collect the counts of following noun group cases.
- For every verb lemma we collect the counts of following preposition group cases.
- Extracted features:
 - Sum of log-probabilities of verb objects over all verbs in the sentence.
 - Sum of log-probabilities of preposition verb objects over all verbs in the sentence.
Examples of features: verb government

- For every verb lemma we collect the counts of following noun group cases.
- For every verb lemma we collect the counts of following preposition group cases.
- Extracted features:
 - Sum of log-probabilities of verb objects over all verbs in the sentence.
 - Sum of log-probabilities of preposition verb objects over all verbs in the sentence.
 - Number of reflexive verbs followed by nominative (strong positive feature).
 - Number of reflexive verbs followed by instrumental case.
 - Total number of verbs in the sentence.
Examples of features: nominatives

- Nominatives: about 20 features.
 - Number of nominatives coordinated with verbs to the right.
 - Number of nominatives coordinated with verbs to the left.
Examples of features: nominatives

- Nominatives: about 20 features.
 - Number of nominatives coordinated with verbs to the right.
 - Number of nominatives coordinated with verbs to the left.
 - Number of nominative-nominative clauses.
 - Number of этo-nominative clauses.
 - Number of noun-adjective clauses etc.
Examples of features: nominatives

- Nominatives: about 20 features.
 - Number of nominatives coordinated with verbs to the right.
 - Number of nominatives coordinated with verbs to the left.
 - Number of nominative-nominative clauses.
 - Number of noreferrer-nominative clauses.
 - Number of noun-adjective clauses etc.

- Accusatives: about 20 features.
 - Number of transitive verbs.
 - Number of transitive verbs followed by accusative/genitive.
 - Number of transitive verbs preceded by he and followed by accusative/genitive.
 - Number of transitive verbs with direct objects to the left etc.
The learning algorithm

- The main idea: train a linear classifier to rank correct hypotheses higher.

Training procedure:
- Generate \(n \)-best hypotheses for each sentence in the training set using the baseline classifier.
- For each hypothesis extract a feature vector.
- On each sentence \(s_i \), train the classifier to score the feature vector \(x_{i,0} \) higher than vectors \(x_{i,j} \) for other hypotheses \(s_j \):
 \[
 (w; x_{i,0}) > (w; x_{i,j})
 \]
 Equivalently, \[
 (w; x_{i,0} - x_{i,j}) > 0
 \]
- Standard classification task: arrange \(x_{i,0} - x_{i,j} \) to the positive class and the opposite vector to the negative one.
The learning algorithm

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate n-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.

On each sentence s_i, train the classifier to score the feature vector $x_i, 0$ higher than vectors x_i, j for other hypotheses s_j:

$$ (w; x_i, 0) > (w; x_i, j) $$

Equivalently,

$$ (w; x_i, 0 - x_i, j) > 0 $$

Standard classification task: arrange $x_i, 0 - x_i, j$ to the positive class and the opposite vector to the negative one.
The learning algorithm

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate n-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.
 - On each sentence s_i, train the classifier to score the feature vector $x_{i,0}$ higher than vectors $x_{i,j}$ for other hypotheses s_j:
 \[(w; x_{i,0}) > (w; x_{i,j}).\]
The learning algorithm

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate n-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.
 - On each sentence s_i, train the classifier to score the feature vector $x_{i,0}$ higher than vectors $x_{i,j}$ for other hypotheses s_j:

 \[(w; x_{i,0}) > (w; x_{i,j}).\]

 - Equivalently,

 \[(w; x_{i,0} - x_{i,j}) > 0.\]
The learning algorithm

- The main idea: train a linear classifier to rank correct hypotheses higher.
- Training procedure:
 - Generate n-best hypotheses for each sentence in the training set using the baseline classifier.
 - For each hypothesis extract a feature vector.
 - On each sentence s_i, train the classifier to score the feature vector $x_{i,0}$ higher than vectors $x_{i,j}$ for other hypotheses s_j:
 \[(w; x_{i,0}) > (w; x_{i,j}).\]
 - Equivalently,
 \[(w; x_{i,0} - x_{i,j}) > 0.\]
 - Standard classification task: arrange $x_{i,0} - x_{i,j}$ to the positive class and the opposite vector to the negative one.
The tagging algorithm

The prediction procedure:
- Generate \(n \)-best hypotheses for each sentence in the test set using baseline classifier.
The tagging algorithm

- The prediction procedure:
 - Generate n-best hypotheses for each sentence in the test set using baseline classifier.
 - Using the trained vector \mathbf{w} of weights, select the hypothesis $x_{i,j}$ with the highest score $(\mathbf{w}, x_{i,j})$.

Algorithm: logistic regression. Averaged margin perceptron gives slightly worse results.
The tagging algorithm

- The prediction procedure:
 - Generate n-best hypotheses for each sentence in the test set using baseline classifier.
 - Using the trained vector w of weights, select the hypothesis $x_{i,j}$ with the highest score $(w, x_{i,j})$.

- Algorithm: logistic regression. Averaged margin perceptron gives slightly worse results.
Performance evaluation

<table>
<thead>
<tr>
<th>№</th>
<th>Model</th>
<th>Development set</th>
<th>Test set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HMM+prep+trans</td>
<td>95.0</td>
<td>74.1</td>
</tr>
<tr>
<td>2</td>
<td>1+adj+det+prep</td>
<td>95.3</td>
<td>74.3</td>
</tr>
<tr>
<td>3</td>
<td>2+verbs</td>
<td>95.5</td>
<td>75.2</td>
</tr>
<tr>
<td>4</td>
<td>3+nom+acc</td>
<td>96.2</td>
<td>78.1</td>
</tr>
<tr>
<td>5</td>
<td>4+conj+noun-noun</td>
<td>96.3</td>
<td>78.5</td>
</tr>
</tbody>
</table>

Таблица: Results on development and test set of MorphoRuEval-2017
Conclusions

- Positive:
 - Linguistic features and reranking actually work.

- Problems:
 - Careful and labor-intensive feature engineering (otherwise only a marginal gain is achieved).
 - Basic classifier probability receives too much weight.
 - Reranking against lower hypotheses: basic classifier probability already does well.
 - Reranking against higher hypotheses: not all linguistic constraints are violated in such hypotheses.
Conclusions

Positive:
- Linguistic features and reranking actually work.

Problems:
- Careful and labour-intensive feature engineering (otherwise only a marginal gain is achieved).
- Basic classifier probability receives too much weight.
Conclusions

- Positive:
 - Linguistic features and reranking actually work.

- Problems:
 - Careful and labour-intensive feature engineering (otherwise only a marginal gain is achieved).
 - Basic classifier probability receives too much weight.
 - Reranking against lower hypotheses: basic classifier probability already does well.
 - Reranking against higher hypotheses: not all linguistic constraints are violated in such hypotheses.
Future work

- Partial solutions:
 - Rerank only against hypotheses whose basic loss is lower than some threshold.
 - Subtract a margin from basic classifier gain (small positive gains become negative forcing the classifier to use other features).

- Future work:
 - Integrate a stronger basic classifier (CRF or neural nets).
 - Use more complex reranking procedure.
 - Automatic feature selection from patterns.
 - Use more lexically-oriented features.

Alexey Sorokin, Ekaterina Yankovskaya

Using Context Features for Morphological Analysis of Russian
Partial solutions:
- Rerank only against hypotheses whose basic loss is lower than some threshold.
- Subtract a margin from basic classifier gain (small positive gains become negative forcing the classifier to use other features).

Future work:
- Integrate a stronger basic classifier (CRF or neural nets).
- Use more complex reranking procedure.
Future work

- Partial solutions:
 - Rerank only against hypotheses whose basic loss is lower than some threshold.
 - Subtract a margin from basic classifier gain (small positive gains become negative forcing the classifier to use other features).

- Future work:
 - Integrate a stronger basic classifier (CRF or neural nets).
 - Use more complex reranking procedure.
 - Automatic feature selection from patterns.
 - Use more lexically-oriented features.
Спасибо за внимание!
Thank you for your attention!