
 

Computational Linguistics and Intellectual Technologies:  
Proceedings of the International Conference “Dialogue 2017”

Moscow, May 31—June 3, 2017

Semantic Role labeling with neuRal 
netwoRkS foR textS in RuSSian

Shelmanov A. O. (shelmanov@isa.ru), 
Devyatkin D. A. (devyatkin@isa.ru)

Federal Research Center “Computer Science and Control” 
of Russian Academy of Sciences, Moscow, Russia

We present and evaluate neural network models for semantic role labeling 
of texts in Russian. The benchmark for evaluation and training was pre-
pared on the basis of the FrameBank corpus. The paper addresses differ-
ent aspects of learning a neural network model for semantic role labeling 
on different feature sets including syntactic features acquired with the help 
of SyntaxNet. In this work, we rely on architecture engineering and atomic 
features instead of commonly used feature engineering. We investigate the 
ability of learning a model for labeling arguments of “unknown” predicates 
that are not present in a training set using word embeddings as features for 
the replacement of predicate lemmas. We publish the prepared benchmark 
and the models. The experimental results can be used as a baseline for fur-
ther research in semantic role labeling of texts in Russian.
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1. Introduction

Semantic role labeling (SRL) is a useful type of linguistic analysis that maps 
varying low-level syntactic representations of sentences to more abstract argument-
predicate structures. Predicates in these structures are words that express situations, 
they are verbs, verbal nouns, and verb forms. Arguments are words and phrases (of-
ten noun phrases) that play a role in a situation expressed by a predicate. These se-
mantic roles capture meaning of arguments and explicitly present meaningful aspects 
encoded in the sentence by an author. The significance of semantic role annotation 
lies in the fact that such abstract semantic representations naturally can be applied 
for a variety of natural language processing tasks, which require comparison of texts 
by their meaning: question answering [Shen and Lapata, 2007], information extrac-
tion [Christensen et al., 2011], information search [Osipov et al., 2014], machine 
translation [Liu and Gildea, 2010], and others.
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The majority of the state-of-the-art methods for SRL rely on supervised learn-
ing techniques that require a lot of annotated data. This is a problem for developing 
a good SRL system, since creating such an annotated resource is a very expensive 
and difficult task. Such resources have been created for several languages. For to-
day, the most used and researched resources are FrameNet [Baker et al., 1998] and 
Propbank [Kingsbury and Palmer, 2002]—corpora that provide SRL annotations for 
English texts. For long time, there was no such a resource for Russian. Although sev-
eral semantic parsers that produce SRL-like annotations were presented in the past, 
they mostly relied on hand-crafted rules and dictionaries [Sokirko, 2001], as well 
as on training on automatically annotated corpus [Shelmanov and Smirnov, 2014]. 
However, the recent release of FrameBank corpus [Lyashevskaya, 2012; Lyashevskaya 
and Kashkin, 2015] enables new capabilities of using machine learning techniques for 
creating semantic role labelers that work with Russian language and for new funda-
mental research in this direction. In this work, we investigate the ability of training 
a semantic role labeler based on neural networks using various types of linguistic 
features and word embeddings [Le and Mikolov, 2014].

The FrameBank provides the hierarchical role schema, the lexicon with predi-
cates that mostly are verbs (and verb forms), and the partially annotated text corpus 
for more than 800 predicates. We note that the verb coverage by examples of the cor-
pus is still not very high. This encourages us to develop semi-supervised approach 
to improving the parser capabilities of annotating sentences with “unknown” predi-
cates that are not present in the training set. Therefore, in addition of creating and 
evaluating neural network models for SRL we also investigate the ability of using 
word embeddings to mitigate the problem of low verb coverage.

The main contributions of this paper are the following:
1.  The openly available benchmark for evaluation of semantic parsers for Rus-

sian language based on FrameBank corpus1.
2.  The openly-available neural network models for semantic role labeling 

trained on FrameBank and evaluated on different feature sets.
3.  The method for processing “unknown” predicates based on word embeddings.

2. Related Work

One of the first methods for SRL presented in [Gildea and Jurafsky, 2002] was 
based on a simple statistical model. Since then, more sophisticated machine learn-
ing techniques have been elaborated very quickly. Several shared tasks CoNLL-2004, 
2005, 2008, and 2009 [Hajic et al., 2009] set up some common benchmarks and re-
vealed useful machine learning approaches, in which authors investigated different 
features sets, task decomposition methods, and global inference techniques. Early 
works devoted to SRL heavily relied on complex feature engineering. The advances 
in neural network training as well as in learning of meaningful representations 
of words sparked new interest to problem of SRL. In many recent works, researchers 
propose new neural network approaches based on architecture engineering. It was 

1 http://nlp.isa.ru/framebank_parser 
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revealed that neural networks do not need complex features, instead they can rely 
on atomic features or even on very low-level representations like tokens or n-grams. 
Such models often significantly outperform the traditional ones. In the rest of the sec-
tion, we review the recent works devoted to SRL for English and Russian.

One of the first well-known publications, in which feature engineering was re-
placed by an architecture engineering, is [Collobert et al., 2011]. The researchers 
presented and applied a single neural network model to various natural language 
processing tasks including part-of-speech tagging, named entity recognition, and se-
mantic role labeling. They showed that this approach allows to reduce domain and 
task specific feature engineering. The main idea of this work lies in exploiting latent 
interactions between features in big and mostly unlabeled training sets.

The paper [Roth and Lapata, 2016] proposes a novel model for SRL based on re-
current neural network. The researchers claim that complex syntactic structures are 
not analyzed well by baseline approaches. They proposed a model that processes sub-
sequences of lexicalized dependency paths and learns suitable embedding representa-
tions of them. The researchers empirically showed that such embeddings can improve 
results over the previous baseline SRL approaches.

In the similar way, [FitzGerald et al., 2015] presented a new model for SRL, 
in which arguments and semantic roles are jointly embedded in a shared vector space 
for a given predicate. This model utilizes finer-grained semantic similarity between 
roles. The researchers trained a neural network to approximate the potential functions 
of a graphical model designed for the SRL task and used this network to build embed-
dings. They showed that the proposed model can learn jointly from PropBank and 
FrameNet to achieve performance improvements on the smaller FrameNet dataset.

In [Foland and Martin, 2015], authors proposed a method for SRL based on convo-
lutional and time-domain neural networks. The method takes into account features de-
rived from a dependency parser output. The authors explored the benefits of adding in-
creasingly more complex dependency-based features to the model. The proposed method 
demonstrated state-of-the-art performance and low computational requirements. 

Recently, several works proposed end-to-end SRL approaches that do not require 
syntactic features. These approaches allow to avoid losing information between dif-
ferent stages of text processing. 

In [Marcheggiani et al., 2017], researchers proposed a simple syntax-agnostic 
model for dependency-based SRL. That model predicts predicate-argument dependen-
cies relying on states of a bidirectional LSTM encoder [Hochreiter and Schmidhuber, 
1997]. The authors showed that sufficient accuracy on English texts can be achieved 
even without syntactic information using only local inference. It was also approved 
that the model is more robust on the standard out-of-domain test set than the baselines.

Similar approach was proposed in [Zhou and Xu, 2015]. The researchers applied 
a model based on bidirectional recurrent network for end-to-end SRL. They did not 
use any syntactic information but relied only on original text as the input features. 
The model was evaluated on SRL task of CoNLL-2005 and coreference resolution task 
of CoNLL-2012. It outperformed the previous state-of-the-art ensemble models. The 
authors revealed that the proposed model is better at processing longer sentences 
than the baseline approaches.



Shelmanov A. O., Devyatkin D. A.

 

It is also worth noting great interest to joint modeling of syntax and semantics 
in many works devoted to SRL. For example, in [Swayamdipta et al., 2016], a transition-
based model for SRL that jointly produces syntactic and semantic dependencies was 
presented. The model is based on a stack of LSTM cells and is used for representation 
of the entire algorithm state. The researchers also proposed a greedy inference algorithm, 
which works in linear time. They obtained the best published parsing performance among 
models that jointly learn syntax and semantics on the CoNLL-2008, 2009 datasets.

There are a few works devoted to semantic role labeling of Russian language texts. 
In the previous work, we used rule and dictionary-based semantic parser for creating 
automatically annotated corpus for training a model for SRL [Shelmanov and Smirnov, 
2014]. In [Kuznetsov, 2015; Kuznetsov, 2016], SVM-based semantic role labeler was 
trained on FrameBank corpus. The corpus was supplemented by syntactic features 
generated by the pipeline presented in [Sharoff and Nivre, 2011]. The author also per-
formed clustering of lexis features to extract additional semantic information from the 
corpus and used ILP-optimization approach for post processing. This work is based 
on the pre-release version of the FrameBank corpus and does not provide the tools for 
the data preparation, modeling, and evaluation. In this work, author did not use neural 
networks and word embeddings as features mostly relying on feature engineering.

In our work, instead of feature engineering, we use atomic features with word 
embeddings and neural networks. We also research the problem of semantic role la-
beling for “unknown” predicates (out-of-domain predicates) and propose the simple 
approach to that problem. We publish the benchmark for model construction and 
evaluation on the FrameBank corpus.

3. Neural Network Models for FrameBank Parsing

We present two neural network models for semantic role labeling. These models 
mostly diverge in the way different feature types are aggregated. We used the follow-
ing features:

Categorical:
1)  Various types of morphological features of both an argument and a predi-

cate: part of speech, grammar case, animacy, verb form, time, passiveness, 
and others. (“morph”).

2)  Relative position of an argument in a sentence with respect to a predicate. 
(“rel_pos”).

3) Predicate lemma (“pred_lemma”).
4) Preposition of an argument extracted from a syntax tree (“arg_prep”).
5)  Name of a syntax link from argument to its parent in a syntax tree (“synt_link”).

Embeddings:
1) Embedding of an argument lemma (“arg_emeddings”).
2) Embedding of a predicate lemma (“pred_emeddings”).

The first neural network model has the simple architecture that acquires all 
features of an argument: sparse and dense, as a single vector and propagates them 
through three dense layers. The two hidden layers have ReLU activations and the 
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output layer has softmax activation. The softmax activation is a standard way of pro-
ducing final probabilities of classes in a multinomial classification task. The ReLU ac-
tivation is a rectifier function that propagates only positive signal through a network. 
This activation function is convenient since it simplifies training of deep architectures 
and results in lesser overfitting effect than many other functions. In the hidden layers, 
we use batch normalization [Ioffe and Szegedy, 2015]. In this technique, inputs of lay-
ers are normalized in each mini-batch, which drastically increases the training speed 
of networks and also regularizes them. The network also has two dropout layers for 
additional regularization. We will refer to this model as “simple”.

The second neural network is intended to handle embeddings and categorical fea-
tures more intelligently than the “simple” one. The problem of processing the both types 
of features lies in their different nature. The categorical features are sparse, therefore, 
merging them with embeddings within one dense layer would result in a big number 
of parameters. The better way of handling this case is to embed sparse categorical fea-
tures first and merge them later. Therefore, the complex model has the same types of lay-
ers but the first layer is split into several chunks: a chunk for categorical features, a chunk 
for an argument embedding (if it is present in a feature set), and a chunk for a predicate 
embedding (if it is present in a feature set). Such an architecture is much smaller than 
the “simple” one in terms of parameters, thus, it overfits less and is trained faster. We will 
refer to this model as “complex”. The Figure 1 depicts the neural network architectures.
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figure 1. Architectures of neural network models
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We compile these models with Adam optimizer [Kingma and Ba, 2015] and a stan-
dard categorical cross entropy loss function. These models and different subsets of the 
aforementioned features are used for labeling of arguments of “known” predicates. 

For labeling arguments of “unknown” predicates, we also use the similar archi-
tectures. However, in this setting we cannot rely on predicate lemma feature, since 
there will be no lemma in the test set known by the model. In this setting, predicate 
embeddings should give the most significant impact on a network performance. Em-
beddings, due to the way they are built, encode semantic similarities of words in a low 
dimensional vector space [Le and Mikolov, 2014]. Many text processing methods that 
have been recently developed rely heavily on this remarkable property of embeddings 
and demonstrate its great usefulness. We investigate the ability of substituting predi-
cate lemma feature in SRL parser by its embedding. Embeddings are built in an un-
supervised manner on a huge unlabeled corpus, so model does not need to see every 
predicate lemma in a small semantically labeled training set to obtain its embedding. 
Since such embeddings encode similarities between words, they could also encode 
similarities between frame structures of predicates. Therefore, we can use training 
examples of “known” predicates to infer the frame structure of “unknown” predicates 
that are similar to the former in an embedding vector space. The bigger the similarity, 
the more precise we can restore frame structures of “unknown” predicates.

In the setting for “unknown” predicates, we additionally used early stopping 
in the training procedure since it becomes useless to tune fixed number of epochs for 
out-of-domain test set.

4. Experiments

4.1. Experiment Setup

We used the publicly released version of FrameBank corpus2. The corpus con-
tains annotated text examples that consist of multiple sentences. Tokens in the sen-
tences are annotated with morphological and some other features. The role and the 
predicate annotations are separated from the texts. The original version of the corpus 
does not contain explicit exact mapping between role annotations and tokens or text 
spans. To mitigate this problem, we created the automatic tool for mapping predicates 
and arguments with core roles to text tokens.

To create the syntax annotation for FrameBank, we used Google’s SyntaxNet 
parser3 [Andor et al., 2016]. This parser was trained on SyntagRus treebank [Nivre 
et al., 2008] and provides high quality parsing for Russian texts according to [Alberti 
et al., 2017]. We used dockerized version of SyntaxNet with a model for Russian4,5. 

2 https://github.com/olesar/framebank

3 https://github.com/tensorflow/models/tree/master/syntaxnet

4 https://github.com/IINemo/docker-syntaxnet_rus

5 https://hub.docker.com/r/inemo/syntaxnet_rus
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The parser creates a fully connected dependency tree for a sentence with syntax tags 
on every parent-child link. The syntax structure corresponds to well-known Universal 
dependencies format [Nivre et al., 2016].

After the mapping procedure, we obtained the corpus that contains examples 
for 803 predicates. We selected the subcorpus by keeping only predicates that have 
at least 10 examples. This results in 572 predicates left in the subcorpus. We also fil-
tered out arguments with infrequent semantic roles and preprocessed erroneous role 
labels that do not correspond to the role ontology of FrameBank published in [Kash-
kin and Lyashevskaya, 2013]. The final version of the whole experimental dataset con-
tains 53,151 examples with 44 different semantic roles.

The word embeddings used in our experiments are provided by RusVectores 2.06 
[Kutuzov and Andreev, 2015]. They were pre-trained on Russian national corpus and 
have 300 dimensions. We note high quality of the model; however, we also note that 
a large portion of predicates (verbs) presented in FrameBank are not covered by it. 
Therefore, more than 17,000 examples in our dataset have zero predicate embeddings.

The hyperparameters of the proposed neural network models on different fea-
tures sets were tuned using the greedy strategy. We mostly tuned dropout ratio, the 
size of internal dense layers, and a number of training epochs.

For the simple baseline, we use a parser that assigns the most frequent semantic 
role to every argument in the test set. Obviously, this baseline has low performance, 
but it shows the skewness in the evaluation set, which reflects the complexity of the 
task and the impact of other models.

We evaluated our models using macro and micro F1 score. We note that our re-
sults are not directly comparable with the results presented in [Kuznetsov, 2015]. This 
is due to the fact that the author used different annotation scheme and different pre-
release version of FrameBank corpus with unknown preprocessing procedures.

4.2. Evaluating Models on “Known” Predicates

In the first experiment, we evaluate our models on different feature sets: lexis, 
morphological, syntactic, and word embeddings. In each feature set we also use rela-
tive position feature. The performance of the models is assessed using five-fold cross 
validation on the selected subcorpus of FrameBank. The evaluation results are pre-
sented in Table 1.

table 1. Performance of the models on different feature sets

Model + feature set Macro F1-score, % Micro F1-score, %

Baseline 0.5 ± 0.0 11.6 ± 0.2
Simple + morph 22.8 ± 0.6 35.4 ± 0.3
Simple + morph + pred_lemma 71.2 ± 0.6 76.1 ± 0.5
Simple + morph + pred_emeddings 62.0 ± 0.4 65.2 ± 0.3

6 http://rusvectores.org/en
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Model + feature set Macro F1-score, % Micro F1-score, %

Simple + morph + pred_lemma + 
arg_prep

75.9 ± 0.4 79.2 ± 0.2

Simple + morph + pred_lemma + 
arg_prep + synt_link

76.8 ± 0.5 80.3 ± 0.3

Simple + morph + pred_lemma + 
arg_prep + synt_link + arg_embed-
dings + pred_embeddings

78.6 ± 0.4 81.8 ± 0.2

Complex + morph + synt + 
pred_lemma + arg_embeddings + 
pred_embeddings

79.2 ± 0.3 82.3 ± 0.2

Since the evaluation dataset is not very unbalanced, the baseline that marks the 
dominant class has a very low performance. Adding morphological features of predi-
cates and arguments results in a substantial improvment over the baseline: Δmicro 
F1 = 23.8%. This setting shows the importance of low-level linguistic features in seman-
tic role labeling without appealing to any semantics of arguments and predicates. This 
performance could be achieved without any knowledge about meaning of predicates 
or arguments and syntactic information. With adding predicate lemmas, we drasti-
cally improve performance of labeling by Δmicro F1=40.7%, which is not surprising. 
Since frame structures are invoked by a predicate that represents a situation, roles can 
be very specific to predicates. Without knowledge of which predicate invoked the cur-
rent frame, in many cases, it is impossible to distinguish roles of morphologically similar 
arguments. The results of the setting, in which we substitute predicate lemma with its 
embeddings, show that the performance drop without predicate lemmas is not very big, 
when at least embeddings of predicates are present. This enables the ability of building 
a model for “unknown” predicates relying on properties of word embeddings. 

In the next setting, the feature set is composed of morphological features, predi-
cate lemmas, and argument preposition. The preposition in Russian is considered 
to be very important for semantic role labeling. We observe an Δmicro F1 = 3.1% in-
crease compared to the model that does not take it into account, which is very sig-
nificant for building a good semantic parser. Adding names of parent syntax links 
of arguments as features extends this improvement by another percent. We used only 
basic syntactic features: preposition and the parent link, whereas it is also worth add-
ing, e.g., the syntactic path from argument to predicate as suggested in many pre-
vious works. We leave this for the future work, since it would require comparison 
of many different embedding techniques for a very sparse space of syntactic paths. 
We also note that although the syntactic features are important for building a good 
SRL model, they do not drastically increase the performance of the parser. Following 
several techniques presented in related work that suggest syntax agnostic models for 
English, we consider the task of creation an accurate model for Russian without ap-
pealing to syntactic parsing also feasible.

Adding embeddings of arguments and predicates to the rest of the features yields 
the best results. The “simple” model as expected gives the smallest performance gain 
Δmicro F1 = 1.5%. Adding embeddings directly as additional dimensions results in 
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a big growth of a number of parameters. Therefore, such a network tends to overfit-
ting. The “complex” model due to its architecture is twice as smaller in terms of pa-
rameters compared to the “simple” one. It gives another small but significant perfor-
mance improvement Δmicro F1 = 0.5% compared to the “simple” model on the full 
feature set. It also trains and runs much faster than the “simple” model.

4.3. Evaluating Models on “Unknown” Predicates

In the second experiment, we research the importance of word embeddings in the 
task of labeling arguments of “unknown” predicates. For this setting, we split the se-
lected subcorpus of FrameBank in two parts: training and testing in such a way that 
the part for testing contains only predicates that are absent from the part for training. 
We perform evaluations for two different split methods. In the first split, the test part 
is composed from examples for predicates that have highly similar predicates in the 
training part. For that, cosine similarity of every two predicate embeddings is calculated. 
The top 27 similar pairs of predicates are distributed into different parts of corpus. In this 
case, we get 49,709 training and 3,442 testing examples. Such a split represents the good 
case, in which semantic similarity of “unknown” predicates to “known” ones can be cap-
tured by their word embeddings. This case should be easy for the models. In the second 
split, in a contrary, we compose the test part from predicates that are least similar to any 
of the “known” predicates. This split yields 50,093 training examples, and 3,058 testing 
examples with 21 predicates in the test set. This case should be the hardest for the models 
to handle. In this experiment, we do not perform cross-validation. Instead, we train mod-
els five times with different random seeds and test them on the prepared holdout. This 
does not prevent overfitting but alleviates the problem of randomness of model training.

We compare “simple” model with all categorical features and without embed-
dings, the “complex” model with categorical features and only argument embeddings, 
and the “complex” model with categorical features, as well as argument and predicate 
embeddings. The evaluation results are presented in Table 2 and 3.

table 2. Evaluation of the models on the “unknown” predicates in the “good” split

Model + feature set Macro F1-score, % Micro F1-score, %

Baseline 0.4 9.6
Simple 13.7 ± 0.4 24.6 ± 0.3
Complex + arg_embeddings 19.4 ± 0.3 31.9 ± 0.5
Complex + arg_pred_embeddings 41.4 ± 0.7 66.7 ± 1.1

table 3. Evaluation of the models on the “unknown” predicates in the “bad” split

Model + feature set Macro F1-score, % Micro F1-score, %

Baseline 0.7 13.2
Simple 9.1 ± 0.2 24.8 ± 0.5
Complex + arg_embeddings 14.5 ± 0.7 27.2 ± 0.1
Complex + arg_pred_embeddings 24.1 ± 1.5 41.4 ± 2.2
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The results show that there is a substantial performance drop in macro and mi-
cro scores on the “unknown” predicates. However, we see that on completely unseen 
predicates the complex model with embeddings shows a decent micro score. The 
model on the good split shows expectedly better results than on the bad split. This 
confirms the significance of the presence in the training set of predicates that are simi-
lar to “unknown” ones in the embedding vector space. However, we note that even 
on a “bad” split the model with embeddings shows much better performance com-
pared to the “simple” model that uses only morphological and syntactic categorical 
features. We should also note again that the substantial part of predicate embeddings 
in the training set are zeros due to already mentioned limitations of used language 
model. This definitely affects the performance of the SRL models. In the future work, 
it is worth training neural networks using more complete language models.

5. Conclusion and Future Work

We presented the neural network models for semantic role labeling of Russian texts. 
We also presented the basic benchmark based on FrameBank corpus for evaluation of pars-
ers for SRL. Both the models and the benchmark are openly available7. The proposed mod-
els were evaluated on different feature sets. The achieved scores could be used as a baseline 
for the future research. We also investigated the method for training a labeler for argu-
ments of “unknown” predicates using word embeddings. We demonstrate that good em-
beddings are essential for building a model for “unknown” predicates, however, it is not 
enough to approach the performance of models trained and tested on in-domain data.

In this work, we did not provide the semantic argument identifier and did not perform 
the global inference step in the SRL parser. The reason for that consists in the fact that Fr-
ameBank corpus provides very sparse annotations (not every argument in sentences is la-
beled). Therefore, learning inference procedure using straightforward approach is hardly 
possible. However, in the future work, we are looking forward to adapt self-learning tech-
niques on the partially annotated data and use integer linear programming inference that 
does not require additional training to further boost the performance of the parser.
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