
	

Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2017”

Moscow, May 31—June 3, 2017

Part-of-speech Tagging with
Rich Language Description

Anastasyev D. G. (daniil_an@abbyy.com),
Andrianov A. I. (andrew_an@abbyy.com),
Indenbom E. M. (eugene_i@abbyy.com)

ABBYY, Moscow, Russia

This paper deals with morphological parsing of natural language texts.
We propose a method that combines comprehensive morphological de-
scription provided by ABBY Y Compreno system and sophisticated machine
learning techniques used by the state-of-the-art POS taggers. The morpho-
logical description contains information about possible grammatical values
of a dictionary word that helps to identify a set of potential hypothesis for
each word during the morphological analysis stage. To analyse out-of-vo-
cabulary words we are building a number of most likely paradigms in the
morphological model using the orthographic features of the analysed word.
The proposed method helps to reduce the number of hypotheses using
the context information of each word. We use Bidirectional LSTM classifier
to handle the context information and to predict the most probable gram-
matical value. The ambiguous grammatical values obtained from morpho-
logical description are used as features for the classifier. Also, we use word
embeddings and orthographic features to achieve better results.

Key words: pos-tagging, morphological analysis, lemmatization, machine
learning, lstm

Морфологическая разметка
с использованием обширного
описания языка

Анастасьев Д. Г. (daniil_an@abbyy.com),
Андрианов А. И. (andrew_an@abbyy.com),
Инденбом Е. М. (eugene_i@abbyy.com)

ABBYY, Москва, Россия

Anastasyev D. G., Andrianov A. I., Indenbom E. M.﻿﻿

�

1.	 Introduction
Part-of-speech (POS) tagging is the task of assigning each word in the given text

an appropriate grammatical value. The morphological analysis is an essential element
of most NLP problems. It means that quality of their solutions highly depends on the
quality of the POS tagging.

Most researches on POS tagging have focused on English. The evaluation of these
models is typically based on Penn Treebank. The latest approaches have claimed
to achieve more than 97.55% accuracy. Unlike the previous methods, the newest ones
are usually designed to use as few morphological features as possible. Such solutions
are more likely to have stable performance on different corpora and to have the ability
to be trained on various languages.

The most well-known Russian POS taggers are mystem [Segalovich, 2003], TnT-
Russian [Sharoff, Nivre, 2011], Tree-Tagger [Schmid, 1994]. In contrast to the mod-
ern English taggers, the mentioned algorithms mostly rely on morphological features.
However, their comparison is difficult because of lack of standard morphological tag-
set and corpora for the Russian language for tagger evaluation.

This work aims to combine comprehensive morphological description provided
by ABBYY Compreno system [Anisimovich et al., 2012] and quite sophisticated ma-
chine learning techniques used by the novel English POS taggers.

Its evaluation was performed during the RuMorphoEval-2017 competition which
was designed to provide a standard tagset and corpus for taggers comparison purposes.

2.	 Proposed Method

2.1.	Russian Morphological Model

The most notable distinction of the proposed approach is the usage of the rich
morphological model of the Russian language. It consists of a vast number of morpho-
logical paradigms and extensive lexicon. The dictionary consists of about 240 thou-
sand of lexemes which provide us more than 3.5 million of words.

Such a significant number of words could be stored quite compactly based on the in-
formation about the words’ paradigms. These paradigms contain information about the
grammatical value of dictionary word and its inflexion. Therefore, we can store in the dic-
tionary only the lexemes and the paradigms and obtain the needed word by composing this
information. Overall, there were identified more than three thousand Russian paradigms.

As a result, usually, the words in corpora can be found in the lexicon and anal-
ysed by the provided morphological model. However, this analysis is not unambigu-
ous: most of the words are homonymous.

This ambiguity may take place between the words of the same lexeme. For in-
stance, “стол” (“table”) can be either nominative or accusative form. Also the ambigu-
ity can appear between the words of different lexemes: “стекло” may be both noun
(“glass”) and verb (“to flow down”).

To deal with the ambiguity, we need to use context information. In the next sec-
tions, we are going to describe the method used to choose the correct analysis.

Part-of-speech Tagging with Rich Language Description

	

2.2.	Unknown Words Processing

Despite the size of the provided lexicon, there are many out of vocabulary
words in the texts. The most obvious examples of such words are named entities and
neologisms.

To lemmatize such words, we use the following technique. We are constructing
a set of pseudo-forms—hypothetical analyses of the given word. Then we are sorting
them by their quality—the probability that the word is in such paradigm.

During the first step, we have to obtain all pairs of stem and paradigm conformed
to our language model. As a result, we are going to receive the grammatical value
of the word and its inflexion.

The stem of the word is its part without ending. All potential endings of the word
can be found in the language description. Moreover, for each ending we can collect
all possible paradigms—that is all paradigms where such ending occurs. Therefore,
we get few stems with a limited number of paradigms agreed with the stem according
to the language model.

Thus, we build a set of hypotheses—more than half of thousand in average. The
next step is their ranking. The key element of the sorting is the usage of N-gram sta-
tistics of suffixes of word’s stems. It based on the assumption that new words should
contain patterns similar to some fragments of existing ones. Then it is likely to find
these patterns in the suffixes of dictionary words.

Therefore, we should prefer forms that maximise the following function:

𝑄𝑄(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = Ρ(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓))

8.15 ∙ 10−7

8.15 ∙ 10−7 + 1.03 ∙ 10−6
≈ 0.4417

Such probability can be estimated by corpora information.
Still, to improve the ranking, we should use the context information in a similar

way as in the case of dictionary words.

2.3.	Features

In our model following features are incorporated.
Grammatical value. Obviously, the information about the grammatical values

of context words is vital in determining the grammatical value of the analysed word.
We store these grammatical values of a word in the vector of size equals to the overall
number of available grammemes. It means that each component of this vector corre-
sponds to some grammeme.

However, as was mentioned in section 2.1, practically each morphological analy-
sis contains some homonymy. So we write into the vector the estimated probability
of each grammeme. The probability is calculated using the sum of frequencies of the
morphological forms contains such grammeme.

For instance, consider the word “стул” (“chair”). It is a nominative form with fre-
quency equals to 1.03·10−6 or accusative form 8.15·10−7 frequency. Thi leads us to the
quality of the accusative grammeme calculated as

𝑄𝑄(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = Ρ(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓))

8.15 ∙ 10−7

8.15 ∙ 10−7 + 1.03 ∙ 10−6
≈ 0.4417

Anastasyev D. G., Andrianov A. I., Indenbom E. M.﻿﻿

�

Ambiguity classes’ probabilities. Another type of features is probabilities
of predicted classes (i.e. word’s possible grammatical values). Such features set soft
constraints on predictions. The probability is proportional to max frequency of form
obtained by morphological analysis of the word.

Punctuation. The binary feature that corresponds to whether particular punc-
tuation mark appears in the particular position in the word’s surrounding.

Word’s case type. The binary feature that says whether the word has proper,
or upper, or lower capitalization.

Suffixes. The binary feature: whether the word has such suffix. Suffixes with
length up to 3 were used during the developing of the model. To reduce the dimen-
sions of the feature space, suffixes with low frequency were pruned: we collected
35 one-letter suffixes, 507 two-letters suffixes and 2316 three-letters suffixes with
considerably large frequency.

Word Embeddings. 250-dimension dense vector corresponding to some word. The
word embeddings technique has proved to be very effective in various NLP-tasks. There
is a number of state-of-the-art English POS-taggers which utilise the power of the technique.

2.4.	Learning Model

Predicted Classes. We enumerated grammatical values encountered in the train
set. It appears to be slightly less than three hundred different categories of grammati-
cal values. Hence, we can formulate the aim of the learning algorithm as a multiclass
classification between the obtained grammatical values.

In this paper, to use a context of the analysed word, we take advantage of the
Bidirectional Long-Short Term Memory neural networks (BiLSTM) [Hochreiter and
Schmidhuber, 1997].

LSTM Classifier. LSTM is a variant of recurrent neural networks (RNNs). The
RNNs use the information from the previous predictions to choose the label of the
current input. Such architecture suits to POS-tagging better than traditional neu-
ral networks. However, it was proved that RNNs suffer from the gradient vanishing
problem [Bengio et al., 1994]. It means that the ordinary recurrent network is aware
only about the inputs from the short-period, but the information from more time steps
is vanishing. LSTMs use gating mechanism to deal with the problem. It helps to the
network to explicitly model long-term dependencies.

Meanwhile, the LSTM’s hidden state stores information only about the previous
words. To obtain the data from both the previous and the next words, we use the
Bidirectional LSTM architecture. Its basic idea is to combine two LSTMs—forward
and backward—and concatenate their output. Such a simple solution has been proven
to be effective in the POS-tagging and similar tasks.

In this work, we decided to use a two-layer Bidirectional LSTM. During the de-
velopment of the model, the additional layer gave obvious improvements in the per-
formance of the LSTM on the validation set. However, it should be noted that such
improvement may not be necessary for the practical usage. With the extra layer, both
the train and the prediction time increases twofold. Moreover, the size of the network
grows up. As a result, the usage of the second layer does not seem to be mandatory.

Part-of-speech Tagging with Rich Language Description

	

Additional Layers. Furthermore, we add a hidden Dense layer with ReLU acti-
vation on top of the LSTMs. This layer should help to handle the nonlinearity of the
problem. The ReLU activation function is designed to deal with gradient vanishing
problem. To connect this layer with the LSTM, we use the TimeDistributed wrapper
from the keras library. This wrapper is used to apply the Dense layer to each word
in the sentence separately.

Output Layer. The output layer is also wrapped by the TimeDistributed layer
and it uses softmax activation function to output the probabilities for each considered
grammar value.

Input Layers. We use few distinct input layers. First of all, we have a Grammemes
input layer. It receives morphological features—the grammatical value, ambiguity
classes’ probabilities and the word’s case type—and information about punctuation.
Overall, we collected 617 different features. It is much lesser than the number of fea-
tures used in most of the state-of-the-art classifiers. The main reason to such small
set is the specificity of neural networks: we hardly can train a network on a large and
sparse feature set. On the other hand, the features obtained by morphological analysis
seem to be strong enough to rely on them.

As stated in section 2.3, we also utilise word embeddings technique. So we have
another input layer to perform it. The model with both word embeddings and mor-
phological features dramatically outperformed the model that uses only the morpho-
logical features.

We have considered the usage of the suffix features. We apply them using the
embedding technique: for each suffix length we create a separate input layer and pass
the input to the embeddings layer.

To reduce the dimensions of word embeddings’ and suffixes’ features, we imple-
ment a preprocessing to each analysed word. We substitute by a star (‘*’) all letters
that do not belong to Russian alphabet or number, punctuation and symbols Unicode
character categories. We replace each digit by zero (‘0’). Finally, we convert each word
to lower case. Such normalization leads to the reduction of the number of possible dif-
ferent word and suffix types.

Regularization. For the regularisation proposes we use Dropout technique
[Srivastava et al., 2014]. We apply dropout to the Embedding layer, to the output
of the LSTMs and inside the LSTM layers. Also, we utilise Batch Normalization [Ioffe,
2015] for the hidden Dense layer. This method helps to achieve faster learning speed
and higher overall accuracy.

Optimizer. As an optimisation algorithm we have chosen the Adam optimizer
[Kingma and Ba, 2014].

Summary. We implemented our model using the keras library1 on theano back-
end [Bergstra et al., 2010].

The Fig. 1 illustrates the basic structure of our neural network with parameters
corresponded to the keras parameters.

1	 From keras library: https://github.com/fchollet/keras/

Anastasyev D. G., Andrianov A. I., Indenbom E. M.﻿﻿

�

Grammemes: InputLayer
input:

output:

(None, None, 617)

(None, None, 617)

Grammemes Masking
(mask_value=0.)

input:

output:

(None, None, 617)

(None, None, 617)

LSTM Input: Merge
input:

output:

[(None, None, 617), (None, None, 250)]

(None, None, 867)

Words: InputLayer
input:

output:

(None, None)

(None, None)

Embedding(input_dim=25000, output_dim=250,
dropout=0.2, mask_zero=True)

input:

output:

(None, None)

(None, None, 250)

Bidirectional LSTM (dropout_W=0.2, dropout_U=0.2,
merge_mode=’concat’)

input:

output:

(None, None, 867)

(None, None, 1536)

Bidirectional LSTM (dropout_W=0.2, dropout_U=0.2,
merge_mode=’concat’)

input:

output:

(None, None, 1536)

(None, None, 1024)

TimeDistributed(Dropout(0.2))
input:

output:

(None, None, 1024)

(None, None, 1024)

TimeDistributed(Dense)
input:

output:

(None, None, 1024)

(None, None, 512)

TimeDistributed(BatchNormalization)
input:

output:

(None, None, 512)

(None, None, 512)

TimeDistributed(ReLU Activation)
input:

output:

(None, None, 512)

(None, None, 512)

TimeDistributed(Dense (Softmax activation)) : Output layer
input:

output:

(None, None, 512)

(None, None, 286)

Fig. 1. Structure of the neural network

3.	 Model Development

The model was trained during participation in the MorphoRuEval-2017 competi-
tion2. In this competition the multiclass accuracy is used as the metric.

3.1.	Tagset

The competition used slightly modified Universal Dependencies tagset3.
Our morphological description is based on other tags, so we wrote a converter

from our grammatical values to the required tagset. The convertor’s mapping sets the

2	 https://github.com/dialogue-evaluation/morphoRuEval-2017

3	 http://universaldependencies.org/ru/feat/all.html

Part-of-speech Tagging with Rich Language Description

	

one-to-many relationship between our grammemes and the grammemes in the Uni-
versal Dependencies. It means that in some cases we convert our grammatical value
to a few Universal Dependencies grammatical values with frequencies equal to the
frequency of the initial grammatical value.

The converter is used in two ways. First of all, it is applied to obtain the set of am-
biguity classes’ probabilities. It seems acceptable to have an additional ambiguity due
to the conversion process. Besides, we used the converter to train our model on ad-
ditional corpora that were tagged with our tagset.

3.2.	Training Data

As an additional corpora, we used a subset of Russian Wikipedia and parallel
corpus of translated English novels. The Wikipedia corpus contains more than 3 mil-
lion tokens. From the corpus of novels, we extracted subcorpus with about 30 million
tokens. We used ABBYY Compreno system to perform tagging of the texts.

Besides, we used GICR texts with Universal Dependencies tagset4. This corpus
consists of about one million tokens. It contains sentences from different social media
sources.

3.3.	Sentences padding

We use LSTMs to be able to deal with the whole sentence during classification
stage. However, this neural network requires a three-dimensional tensor as an in-
put. Due to inequality of the sentence lengths, we are not able to store the train data
in one tensor without any changes. One of such possible changes is padding method:
we choose the maximum sentence length and pad (i.e. add zeros to) all shorter
sentences.

In addition to padding, we use a masking mechanism: we restrict the network
from training on the padded elements.

The padding may drastically expand the size of the train data: with large maxi-
mum sentence length, we would usually waste memory on the zeros in the short sen-
tences. To reduce the usage of memory, we divided all sentences into a few groups
with different length: the sentences with up to 6, from 7 to 14, from 15 to 25, from
26 to 40 and more than 40 words.

3.4.	Word Embeddings

As a baseline, we used randomly uniformly initialized embeddings for the first
5000 most frequent words with output dimension equals to 250. Surprisingly, the
pretrained word embeddings (about 470 thousand words and 200-dimension output
vector) had not given any enhancement. We decided to use randomly initialized em-
beddings of the 25 thousand most frequent words only.

4	 https://github.com/dialogue-evaluation/morphoRuEval-2017/blob/master/GICRYA_texts.zip

Anastasyev D. G., Andrianov A. I., Indenbom E. M.﻿﻿

�

3.5.	Model Training

To evaluate the quality of the model, we divided the GICR data into train and
validation set at a ratio of 2 to 1.

The model development was performed in the following way. Firstly, we have
experimented on the GICR texts to obtain optimal network architecture and the best
set of hyperparameters. Then we have used the additional corpora to improve the
achieved results. Also, we have experimented with extra layers and increased number
of neurones on the additional data.

During the first stage, we found out the effectiveness of the network’s architec-
ture described in Fig 1. We achieved 96.31% accuracy on the validation set.

The additional suffixes features increased the accuracy up to 96.41%.
The usage of the extra Wikipedia subcorpus helped to improve the classifier

quality to 96.78%. At the same time, the model trained on the Wikipedia only man-
aged to achieve only 93.24%. The reason for such poor quality seems to be the case
of the known fact: the accuracy of tagger trained on one text genre drops dramatically
on other genres [Giesbrecht and Evert, 2009].

To deal with the problem, we applied the technique known as fine tuning.
We used the weights of the model pretrained on the Wikipedia to initialize weights
of the model and trained the model on GICR. That led to 97.43% accuracy.

We exploited this method to train the model on our novels subcorpus. The model
trained on the novels subcorpus only was able to reach 95.36% accuracy. Fine tuning
of this model on the GICR texts gave 97.78% accuracy, which is our best result on the
validation set.

The Table 2 summarises the performance of the model achieved by usage of dif-
ferent train sets.

Table 2. Accuracies of the model trained on different
corpora achieved on the validation set

Model Train corpus
Accuracy on the
validation set

Basic model GICR 96.31%
+ suffix features GICR 96.41%
+ suffix features Wiki 93.24%
+ suffix features GICR + Wiki 96.78%
+ suffix features pretrained on Wiki, trained on GICR 97.43%
+ suffix features Novels 95.36%
+ suffix features pretrained on Novels, trained on GICR 97.78%

Part-of-speech Tagging with Rich Language Description

	

4.	 Evaluation
The evaluation was performed on three different genres of texts: fiction texts5,

news texts6 and social networks texts7.

4.1.	Achieved Results

Our system received the following results:

Table 1. Performance of the model evaluated on MorphoRuEval-2017 test data

genre
accuracy
by tokens # tokens

correct
tokens

accuracy
by sentences # sentences

correct
sentences

fiction 97.45% 4,042 3,939 81.98% 394 323
news 97.37% 4,179 4,069 87.71% 358 314
social 96.52% 3,877 3,742 81.34% 568 462

The accuracy by sentences metric shows the fraction of sentences where each
word was tagged correctly.

The degradation of performance on the social media texts should be the case of the
genre differences between the train and test sets. Besides, the design of our algorithm
leads to better performance on texts with proper spelling and good grammar. Frequent
misspellings in the social media text limit the ability of the method to use the lexicon.

4.2.	Errors Analysis

Table 3 shows the most frequent mistakes that our algorithm made during the
MorphoRuEval-2017 competition. The “Number of occurrences” column shows fre-
quency of the correct tag in the test selection, the “Number of error” column shows the
number of cases when another tag was mistakenly predicted.

Table 3. Frequencies of the most common errors made by our system

Correct tag Number of occurrences Predicted tag Number of errors

Nominative 2,650 Accusative 60
Accusative 1,644 Nominative 37
Plural 2,777 Singular 28
Nominative 2,650 Genitive 19
DET 656 PRON 14
PRON 1,133 DER 11

5	 From magazines.russ.ru

6	 From lenta.ru

7	 From vk.com

Anastasyev D. G., Andrianov A. I., Indenbom E. M.﻿﻿

�

About 30% of all mistakes are the result of the ambiguity between nominative and
accusative cases. The architecture of our network was designed to deal with such ambi-
guity by usage of the whole context of the word. However, even LSTM networks cannot
perform well on long dependencies (which is a case of the gradient vanishing described
in the 2.4 section). On the other hand, the system tends to follow the agreement between
the tag of noun and its modifiers. Therefore, the incorrectly chosen tag of a noun usually
leads to errors additional errors in the predicted grammatical value of the modifiers.

The mistakes in the determination of the number of nouns are also quite fre-
quent—around 11% of all errors. For example, word “спортсменки” may be singu-
lar and in the genitive case (“sportswoman”) or plural and in the nominative case
(“sportswomen”).

Another type of common errors is connected with distinguishing between some
determiners and pronouns. Word “его” can have either “он” (“he”) or “его” (“his”)
lemma and be either pronoun or determiner.

However, the fraction of such errors seems to be insignificantly low compared
to the number of occurrences of the correct tags. The resolution of the ambiguity be-
tween the nominative and accusative cases seems to be the main issue of the algorithm.

4.3.	Model Parameters Comparison

Using the test data provided by organisers we tested our model with different
parameters.

Table 4 summarises the received results. The Accuracy columns contain the in-
formation about accuracies by tokens and by sentences.

Table 4. Comparison of performance of different models

Model
Fiction
Accuracy

News
Accuracy

Social
Accuracy

Emb(5000)-1LSTM(768)-Dropout(0.2)-
WithSuffixes

92.75% /
59.90%

94.52% /
55.59%

92.03% /
60.39%

Emb(5000)-1BiLSTM(768)-Dropout(0.2)-
WithSuffixes

94.95% /
69.54%

97.01% /
75.70%

94.30% /
71.30%

Emb(5000)-1BiLSTM(768)-Dense(768)-
Dropout(0.2)-WithSuffixes

95.35% /
71.83%

97.20% /
76.82%

94.66% /
73.94%

Emb(5000)-1BiLSTM(768)-2BiLSTM(512)-
Dense(768)-Dropout(0.2)-WithoutSuffixes

95.62% /
74.11%

97.37% /
77.65%

94.97% /
74.65%

Emb(5000)-1BiLSTM(768)-2BiLSTM(512)-
Dense(768)-Dropout(0.2)-WithSuffixes

95.57% /
73.10%

97.37% /
78.77%

95.13% /
74.47%

Emb(5000)-1BiLSTM(768)-2BiLSTM(512)-
Dense(768)-Dropout(0.5)-WithSuffixes

95.30% /
73.35%

97.54% /
79.89%

95.15% /
75.00%

Emb(50000)-1BiLSTM(768)-2BiLSTM(512)-
Dense(768)-Dropout(0.2)-WithSuffixes

95.27% /
71.57%

97.03% /
76.54%

95.00% /
74.65%

Final Variant 97.45% /
81.98%

97.37% /
87.71%

96.52% /
81.34%

Part-of-speech Tagging with Rich Language Description

	

The names of models reflect the architecture of the used network. “Emb” param-
eter shows the number of words in the embeddings layer. The following parameters
show the types of layers and numbers of neurones in them. The last parameter indi-
cates whether the suffix features were incorporated.

All models except the last one were trained on GICR corpus only. The last (“Final
variant”) refers to the model described in section 3.5.

The model with single LSTM layer shows the worst tagging quality. Obviously, the
context information received from the left context only is not sufficient for proper tagging.

Clearly, the system gains from additional layers: the next two models with a sin-
gle Bidirectional LSTM layer perform worse than more complicated models. On the
other hand, larger embeddings layer (the Emb(50000)-model) also leads to poor ac-
curacy. It can be explained by the lack of train data: we should use much bigger corpus
to train such embeddings.

The increase in the dropout values helps to achieve a little better accuracy. Be-
sides, the suffix features give an improvement in the model’s performance.

It should be noted that the model with single Bidirectional LSTM layer and only
5 thousand words in embeddings achieves good enough results in comparison with
our final model while it is 2.5 times smaller. For some applications, such model could
be more plausible than large but accurate one.

5.	 Conclusion

We have developed a POS-tagging model for Russian that can achieve high accu-
racy. Our system showed the best results on the MorphoRuEval-2017 competition. The
degradation of its performance on some genres seems to be reasonably insignificant.
Our model takes advantage of vast morphological description and modern machine
learning techniques. Such approach seems likely to bring improvements in the quality
of NLP-analysis systems based on the morphological analysis.

References

1.	 Anisimovich K. V., Druzhkin K. Ju., Minlos F. R., Petrova M. A., Selegey V. P.,
Zuev K. A. (2012), Syntactic and semantic parser based on ABBYY Compreno
linguistic technologies. Computational linguistics and intellectual technologies:
Proceedings of the International Conference “Dialog 2012”. Vol. 2, pp. 91–103

2.	 Bengio Y., Simard P., Frasconi P. (1994), Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, Vol. 9, Issue 2,
pp. 157–166.

3.	 Choi J. (2016), Dynamic Feature Induction: The Last Gist to the State-of-the-Art,
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (NAACL 2016), San Diego, CA, pp. 271–281.

4.	 Georgiev G., Zhikov V., Osenova P., Simov K., Nakov P. (2012), Feature-rich part-
of-speech tagging for morphologically complex languages: application to Bulgar-
ian, Proceedings of the 13th Conference of the European Chapter of the Associa-
tion for Computational Linguistics, Avignon, France, pp. 492–502.

Anastasyev D. G., Andrianov A. I., Indenbom E. M.﻿﻿

�

5.	 Giesbrecht E., Evert S. (2009), Is Part-of-Speech Tagging a Solved Task? An Evalu-
ation of POS Taggers for the German Web as Corpus, Proceedings of the Fifth
Web as Corpus Workshop (WAC5), pp. 27–35.

6.	 Hochreiter S., Schmidhuber J. (1997), Long Short-Term Memory, Neural Compu-
tation, Vol. 9, Issue 8, pp 1735–1780.

7.	 Ioffe S., Szegedy Ch. (2015), Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, available at: https://arxiv.org/
abs/1502.03167.

8.	 Kingma D., Ba J. (2014), Adam: A Method for Stochastic Optimization, available
at: https://arxiv.org/abs/1412.6980.

9.	 Ma X., Hovy Ed. (2016), End-to-end Sequence Labeling via Bi-directional LSTM-
CNNs-CRF, available at: https://arxiv.org/abs/1603.01354

10.	 Schmid H. (1994), Probabilistic Part-of-Speech Tagging Using Decision Trees.
Proceedings of International Conference on New Methods in Language Process-
ing, Manchester, UK.

11.	 Segalovich I. (2003), A Fast Morphological Algorithm with Unknown Word
Guessing Induced by a Dictionary for a Web Search Engine. Proceedings of the
International Conference on Machine Learning; Models, Technologies and Ap-
plications, Las Vegas, Nevada, USA.

12.	 Selegey D., Shavrina T., Selegey V., Sharoff S. (2016) Automatic morphological
tagging of Russian social media corpora: training and testing, Computational
linguistics and intellectual technologies: Proceedings of the International Con-
ference “Dialog 2016”, pp. 589–604

13.	 Sharoff S., Nivre J. (2011), The proper place of men and machines in language
technology: Processing Russian without any linguistic knowledge. Computa-
tional Linguistics and Intellectual Technologies: Proceedings of the Interna-
tional Conference “Dialog 2011” [Komp’yuternaya Lingvistika i Intellektual’nye
Tekhnologii: Trudy Mezhdunarodnoy Konferentsii “Dialog 2011”], Bekasovo,
pp. 591–605.

14.	 Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R. (2014),
Dropout: A simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, Vol. 15 Issue 1: pp. 1929–1958.

15.	 Theano Development Team (2016), Theano: A Python framework for fast
computation of mathematical expressions, available at: https://arxiv.org/
abs/1605.02688.

16.	 Toutanova K., Klein D., Manning C., Singer Y. (2003), Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-
NAACL 2003, pp. 252–259

17.	 Zalizniak A. (1977) Russian Grammar Dictionary [Grammaticheskii Slovar’
Russkogo Iazyka. Russki Iazyk].

	Part-of-speech tagging with rich language description
	Introduction
	Proposed Method
	Russian Morphological Model
	Unknown Words Processing
	Features
	Learning Model

	Model Development
	Tagset
	Training Data
	Sentences padding
	Word Embeddings
	Model Training

	Evaluation
	Achieved Results
	Errors Analysis
	Model Parameters Comparison

	Conclusion
	References

