Style and Genre Classification by Means of Deep Textual Parsing

Boris Galitsky1, Dmitry Ilvovsky2, Ekaterina Chernyak2, Sergey O. Kuznetsov2

1 Knowledge Trail Inc., San Jose CA, USA
2 Higher School of Economics, Moscow, Russia
Outline

1. Problem overview & motivations
2. Domains: styles / genres
3. Representing a paragraph of text
4. Tree kernel learning of paragraphs
5. Evaluation
6. Communicative Discourse Trees & Argument identification problem
7. Conclusions
Problem overview

Classifying a text into abstract classes based on its deep linguistic structure:

1. **Styles**
 - 2 classes from industrial task
 - Proprietary Engineering documents vs. Non-proprietary technical documents

2. **Genres**
 - N classes from academic corpus
 - Corpus based on functional dimensions [Sharoff, 2015]

3. **Identifying logical arguments** in text
 - Political discussions
 - Customer complaints [Galitsky et al 2008]
 - Disputes / legal documents
Motivation: from keywords to discourse structure

• Just **keywords** - is not enough in many cases
• Presence of **verbs for communicative actions and mental states** - may help to identify a few patterns, but is still insufficient
• **Parse trees** - specific phrases by texts in style or genre but still does not help for systematic exploration of deep linguistic features
• The **discourse structure** including rhetoric relations and communicative actions

We should be able to learn discourse trees
Secondary, Tertiary, Quaternary structure of language

Computational biologists figured out that higher-level structures of protein language help! However, linguists like to talk about higher-level (discourse) structures but neither computationally learn them nor use in applications.
Approach

• Build syntactic trees
• Extract discourse information
 – Coreferences
 – Rhetorical relations [Mann et al., 1987]
 – Communicative actions in VerbNet format
• Build additional arcs between syntactic tree nodes of different sentences
• Construct parse thicket graph [Galitsky et al 2013]
• Pick extended trees from the graph
• Learn on extended trees
• Learn a special case of parse thicket: communicative discourse tree (CDT)
Problem domain 1

- **Engineering Design document** is a document which contains a thorough and well-structured description of how to build a particular engineering system.

- **Not design document**: a document which contains meta-level information relatively to the design of engineering system, such as:
 - how to write design docs manuals,
 - standards design docs should adhere to,
 - tutorials on how to improve design documents,
 - project requirement document,
 - requirement analysis,
 - operational requirements,
 - construction documentation,
 - project planning and binning,
 - technical services review, guidelines, manuals, etc.
Problem Domain 2: Genres based on Functional Text Dimensions

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Argum</td>
<td>To what extent does the text argue to persuade the reader to support (or renounce) an opinion or a point of view? (‘Strongly’, for argumentative blogs, editorials or opinion pieces)</td>
</tr>
<tr>
<td>A4</td>
<td>Fictive</td>
<td>To what extent is the text’s content fictional? (‘None’ if you judge it to be factual/informative.)</td>
</tr>
<tr>
<td>A7</td>
<td>Instruct</td>
<td>To what extent does the text aim at teaching the reader how something works? (For example, a tutorial or an FAQ)</td>
</tr>
<tr>
<td>A8</td>
<td>Hardnews</td>
<td>To what extent does the text appear to be an informative report of events recent at the time of writing?</td>
</tr>
<tr>
<td>A9</td>
<td>Legal</td>
<td>To what extent does the text lay down a contract or specify a set of regulations?</td>
</tr>
</tbody>
</table>
Recognizing **document style**, not document topic

Classification dimensions

- Topicality
- Polarity (sentiment)
- Authorship
- **Document style** (what kind of descriptions is provided for things)

This is necessary for document processing system
Application domains where style recognition is necessary

- Document type (not topic) recognition
- Document flow analysis systems
- Customer relationship management
- Security analysis
- Forensic analysis
- Document quality assessment
Method: Tree Kernels
Tree Kernels

What are they and why use them for classification?

We need to measure distances between texts:

• Traditionally – using statistic of keywords
• More accurate – using statistics of all sub-parse trees
Measuring similarity between phrases
SVM Tree Kernel learning

- **Trees** instead of numeric vectors

\[
TK(T_1, T_2) = \sum_{n_1 \in N_{T_1}} \sum_{n_2 \in N_{T_2}} \Delta(n_1, n_2)
\]

- Tree kernel function = number of all common subtrees [Collins et al 2002]
Convolution tree kernel (Collins and Duffy, 2002) defines a feature space consisting of all subtree types of parse trees and counts the number of common subtrees as the syntactic similarity between two parse trees. They have found a number of applications in a series of NLP tasks, including

- search (Moschitti 2006);
- syntactic parsing re-ranking;
- relation extraction (Zelenko et al 2003);
- named entity recognition (Cumby & Roth 2003);
- Semantic Role Labeling / relation extraction (Zhang et al 2006);
- pronoun resolution (Yang et al., 2006);
- question classification and machine translation (Zhang and Li 2009).
Limitation of sentence-level tree kernels

Phrases important for classification can be distributed through different sentences

So we want to combine/merge parse trees to make sure we cover the phrase of interest.

This document describes how the back end processor can be designed. Its requirements are enumerated below.

From the first sentence, it looks like we got the design doc. To process the second sentence, we need to disambiguate ‘its’. As a result, we conclude from the second sentence that it is a requirement doc.
Discourse tree for a paragraph of text
Merging parse trees, once inter-sentence link is found

Paragraph Level Kernel = Sum of kernels for all extended tree pairs
Parse Thicket
Measuring similarity between two texts using Parse Thickets
Evaluation 1 & 2
Evaluation setup. Styles

- Set of **1200 documents**, auto web mined using keywords “design document AND (java OR engineering OR hardware OR software ...)
- Total 30 search keywords (domains)
- 90% of non-design engineering documents of the classes we want to exclude (meta-documents) and **10% of genuine design documents**
- 5 sub-sets for training/evaluation portions
- Evaluation results were assessed by quality assurance personnel
- Relevant dataset for **benchmarking is unavailable**. Evaluation set is submitted to UCI Machine Learning repository
Results. Styles

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision, %</th>
<th>Recall, %</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Nearest neighbor» (based on TF*IDF)</td>
<td>53.9</td>
<td>62</td>
<td>57.67±0.62</td>
</tr>
<tr>
<td>Naïve Bayesian</td>
<td>55.3</td>
<td>59.7</td>
<td>57.42±0.84</td>
</tr>
<tr>
<td>Tree kernel SVM – regular parse trees</td>
<td>71.4</td>
<td>76.9</td>
<td>74.05±0.55</td>
</tr>
<tr>
<td>Tree kernel SVM – extended parse trees for anaphora</td>
<td>77.8</td>
<td>81.4</td>
<td>79.56±0.70</td>
</tr>
<tr>
<td>Tree kernel SVM – extended parse trees for RST</td>
<td>80.1</td>
<td>80.5</td>
<td>80±1.03</td>
</tr>
<tr>
<td>Tree kernel SVM – extended parse trees for both anaphora and RST</td>
<td>83.3</td>
<td>83.6</td>
<td>83.45±0.78</td>
</tr>
</tbody>
</table>
Evaluation. Genres

- **Dataset**
 - Genre dataset collected by [Sharoff, 2013]
 - Each genre - linear combination of Functional Text Dimensions (FTD)
 - Human-annotated: 0.5, 1, 2 of each FTD
 - 17 FTD

- **Evaluation**
 - 7 genres: fiction stories, Ted, news etc.
 - 9 FTD
 - Pairwise genre classification
 - SVM on extended parse trees for both anaphora and RST
Evaluation. Examples of genres

<table>
<thead>
<tr>
<th>Genre example</th>
<th>A1</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A11</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ted] Emotional political speech</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[fict] Fiction</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>[news] News article</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>[synd] Article on political topic</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[un] UN reports</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>[tele] Hardware manuals</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[tells] Software manuals</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Results. Genres

<table>
<thead>
<tr>
<th>Classes</th>
<th>Recall</th>
<th>Precision</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fict vs News</td>
<td>98.11</td>
<td>95.55</td>
<td>96.81</td>
</tr>
<tr>
<td>Ted vs Synd</td>
<td>99.49</td>
<td>98.94</td>
<td>99.21</td>
</tr>
<tr>
<td>Un vs News</td>
<td>98.70</td>
<td>94.93</td>
<td>96.78</td>
</tr>
<tr>
<td>Tele vs Tells</td>
<td>96.69</td>
<td>90.76</td>
<td>93.63</td>
</tr>
<tr>
<td>Fict vs Ted</td>
<td>97.12</td>
<td>93.74</td>
<td>95.40</td>
</tr>
<tr>
<td>Fict vs Synd</td>
<td>95.21</td>
<td>94.23</td>
<td>94.72</td>
</tr>
<tr>
<td>Fict vs Un</td>
<td>94.90</td>
<td>95.71</td>
<td>95.30</td>
</tr>
<tr>
<td>Fict vs Tele</td>
<td>97.25</td>
<td>94.90</td>
<td>96.06</td>
</tr>
<tr>
<td>Fict vs Tells</td>
<td>96.51</td>
<td>95.61</td>
<td>96.06</td>
</tr>
<tr>
<td>News vs Ted</td>
<td>96.85</td>
<td>93.85</td>
<td>95.33</td>
</tr>
<tr>
<td>News vs Synd</td>
<td>97.28</td>
<td>96.19</td>
<td>96.73</td>
</tr>
<tr>
<td>News vs Tele</td>
<td>96.31</td>
<td>94.27</td>
<td>95.28</td>
</tr>
<tr>
<td>News vs Tells</td>
<td>98.28</td>
<td>96.15</td>
<td>97.20</td>
</tr>
<tr>
<td>Ted vs Un</td>
<td>96.45</td>
<td>97.03</td>
<td>96.74</td>
</tr>
<tr>
<td>Ted vs Tele</td>
<td>97.28</td>
<td>96.62</td>
<td>96.95</td>
</tr>
</tbody>
</table>
Analysis

- **17% increase in style classification** by using tree kernels
- **Further 8% increase** by using extended parse trees
- **Rhetoric relation** source has the strongest contribution
- **Adding new** sources of information increases performance
Domain 3: Identifying Logical Argument in Text
What is required to represent an argument pattern in text?

We build an RST representation of the arguments and observe if a discourse tree is capable of indicating whether a paragraph communicates both:

• a claim, and
• an argumentation that backs it up.

We then explore what needs to be added to a discourse tree (DT) so that it is possible to judge if it expresses an argumentation pattern or not.
Our example

We present a controversial article published in Wall Street Journal about Theranos, a company providing healthcare services, and the company rebuttal (Theranos 2015).

“Since October [2015], the Wall Street Journal has published a series of anonymously sourced accusations that inaccurately portray Theranos. Now, in its latest story (“U.S. Probes Theranos Complaints,” Dec. 20), the Journal once again is relying on anonymous sources, this time reporting two undisclosed and unconfirmed complaints that allegedly were filed with the Centers for Medicare and Medicaid Services (CMS) and U.S. Food and Drug Administration (FDA).”
A claim and its CDT

“...But Theranos has struggled behind the scenes to turn the excitement over its technology into reality. At the end of 2014, the lab instrument developed as the linchpin of its strategy handled just a small fraction of the tests then sold to consumers, according to four former employees.”
“...But Theranos has struggled behind the scenes to turn the excitement over its technology into reality. At the end of 2014, the lab instrument developed as the linchpin of its strategy handled just a small fraction of the tests then sold to consumers, according to four former employees.”

When arbitrary communicative actions are attached to DT as labels of its terminal arcs, it becomes clear that the author is trying to bring her point across and not merely sharing a fact.
Theranos remains actively engaged with its regulators, including CMS and the FDA, and no one, including the Wall Street Journal, has provided Theranos a copy of the alleged complaints to those agencies. Because Theranos has not seen these alleged complaints, it has no basis on which to evaluate the purported complaints.”
“It is not unusual for disgruntled and terminated employees in the heavily regulated health care industry to file complaints in an effort to retaliate against employers for termination of employment. Regulatory agencies have a process for evaluating complaints, many of which are not substantiated. Theranos trusts its regulators to properly investigate any complaints.”
RST + CA => identification of logical argumentation

- To show the structure of arguments, discourse relations are necessary but insufficient, and communicative actions, or speech acts are necessary but insufficient as well.
- We need to know the discourse structure of interactions between agents, and what kind of interactions they are.
- We don’t need to know domain of interaction (here, health), the subjects of these interaction (the company, the journal, the agencies), what are the entities, but we need to take into account mental, domain-independent relations between them.
Another CDT for an attempt to make even stronger counter-claim

“The Theranos remains actively engaged with its regulators, including CMS and the FDA, and no one, including the Wall Street Journal, has provided Theranos a copy of the alleged complaints to those agencies. Because Theranos has not seen these alleged complaints, it has no basis on which to evaluate the purported complaints.”
Let us consider the verb *amuse*. There is a cluster of similar verbs that have a similar structure of arguments (semantic roles) such as *amaze, anger, arouse, disturb, irritate,* and other.

The roles of the arguments of these communicative actions are as follows:

- Experiencer (usually, an animate entity)
- Stimulus
- Result
Extracting communicative actions from text: VerbNet Frames

NP V NP
Example: "The teacher amused the children."
Syntax: Stimulus V Experiencer
Clause:
amuse(Stimulus, E, Emotion, Experiencer):-
cause(Stimulus, E),
emotional_state(result(E), Emotion, Experiencer).

NP V ADV-Middle
Example: "Small children amuse quickly."
Syntax: Experiencer V ADV
Clause:
amuse(Experiencer, Prop):-
property(Experiencer, Prop), adv(Prop).

NP V NP-PRO-ARB
example "The teacher amused."
syntax Stimulus V
amuse(Stimulus, E, Emotion, Experiencer):-
cause(Stimulus, E),
emotional_state(result(E), Emotion, Experiencer).

For this example, the information for the class of verbs amuse is at http://verbs.colorado.edu/verb-index/vn/amuse-31.1.php#amuse-31.1
I explained that my check bounced (I wrote it after I made a deposit). A customer service representative accepted that it usually takes some time to process the deposit. I reminded that I was unfairly charged an overdraft fee a month ago in a similar situation. They denied that it was unfair because the overdraft fee was disclosed in my account information. I disagreed with their fee and wanted this fee deposited back to my account. They explained that nothing can be done at this point and that I need to look into the account rules closer.
I explained that my check bounced (I wrote it after I made a deposit). A customer service representative accepted that it usually takes some time to process the deposit. I reminded that I was unfairly charged an overdraft fee a month ago in a similar situation. They denied that it was unfair because the overdraft fee was disclosed in my account information. I disagreed with their fee and wanted this fee deposited back to my account. They explained that nothing can be done at this point and that I need to look into the account rules closer.

Argumentation scenario and its graph representation
Verbs with Predicative Complements
Appointment, characterize, dub, declare, conjecture, masquerade, orphan, captain, consider, classify.
Verbs of Perception
See, sight, peer.
Psych-Verbs (Verbs of Psychological State)
Amuse, admire, marvel, appeal.
Verbs of Desire
Want, long.
Judgment Verbs
Judgment.
Verbs of Assessment
Assess, estimate.
Verbs of Searching
Hunt, search, stalk, investigate, rummage, ferret.
Verbs of Social Interaction
Correspond, marry, meet, battle.
Verbs of Communication
Transfer(message), inquire, interrogate, tell, manner(speaking), talk, chat, say, complain, advise, confess, lecture, overstate, promise.
Avoid Verbs
Avoid.
Measure Verbs
Register, cost, fit, price, bill.
Aspectual Verbs
Begin, complete, continue, stop, establish, sustain.
Statistical vs inductive learning

To compute similarity between abstract structures, two approaches are employed:

• represent these structures in a numerical space, and express similarity as a number. This is a statistical learning approach
• use a structural representation, without numerical space, such as trees and graphs, and express similarity as a maximal common sub-structure. We refer to such operation as generalization. This is an inductive learning approach.

To conduct feature engineering, we will compare both these approaches for text classification. The representation machinery and learning settings are different, but the classification accuracies can be compared.
Similarity between CDTs: maximal common sub-CDTs with generalized labels
Numerical similarity between CDTs: representation for kernel model
Conclusions and future work

• Extended tree kernel performs classification where “typical” text classification algorithms do not perform well => **structure rules**

• Extended tree kernel significantly outperforms regular ones => **discourse matters**

• “1 vs others scheme”, comparison with methods based on character n-gram features for genre classification => **work to be done**