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Abstract 
        

In this paper we present a comparison of ten systems for automatic morphological analysis: 

TreeTagger, TnT, HunPos, Lapos, Citar, Morfette, Mystem, Pymorhy, Stanford POS tagger and 

SVMTool. Different training and tagging approaches are discussed together with the strengths and 

weaknesses of each system. Probabilistic taggers were trained and tested on the Russian National 

Disambiguated Corpus and achieved accuracy scores as high as 96,94% on POS tags and 92,56% on 

the whole tagset. However, most of the existing taggers cannot resolve various cases of 

morphological ambiguity and show a better performance for morphologically rich languages. We 

believe that the detailed examination of errors caused by homonymy can help to solve the 

disambiguation problem and to improve tagging results. 
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1. Introduction  
 

The number of systems for automatic morphological analysis with a free license, both statistical and 

dictionary-based, has reached a point where a thorough comparative analysis of their performance 

on the same data is absolutely necessary. In this article, we discuss several taggers and various 

approaches to POS tagging with their strengths and weaknesses. We trained and tested probabilistic 

taggers on the Russian National Disambiguated Corpus, a fully annotated corpus for the Russian 

language; as for dictionary-based analyzers mentioned in this article, we used their versions 

inherently developed for Russian. In Section 2 we discuss different taggers and algorithms they use, 

in Section 3 we describe the tests we run and the results we received, and in Section 4 we outline the 

major types of mistakes made by TreeTagger, which is the winner of our competition. 

 

2. Taggers 
 

For our research, we tested ten part-of-speech taggers, which are all free licensed and for the most 

part open source: TreeTagger, TnT, HunPos, Lapos, Citar, Morfette, Mystem, Pymorhy, Stanford 

POS tagger and SVMTool.  

 



2.1. TreeTagger 

TreeTagger (Schmid 1994) is an HMM-based tagger, which differs from the traditional probabilistic 

taggers in the way it estimates the transition probabilities. In contrast to the N-gram taggers that 

typically use smoothing to deal with the sparsity of the training data, TreeTagger uses a binary 

decision tree, built recursively from a training set of trigrams, to obtain estimates of transition 

probabilities. The decision tree automatically determines the appropriate size of the context which is 

used to estimate the probabilities. Possible contexts are not only N-grams, but also other kinds of 

contexts such as e.g. (tag-1 = ADJ and tag-2 != ADJ and tag-2 != DET). The tagger is also capable of 

assigning tags to unknown words using a suffix lexicon organized in a tree for this purpose. At the 

tagging stage user can provide the tagger with lists of tokens to be added to the initial lexicon and 

choose the values to assign to tokens with zero frequencies. At the training stage user can provide 

the tagger with additional lexicon lists.  

 

2.2. TnT 

TrigramsônôTags (TnT) is a statistical part-of-speech tagger based on second order Markov models. 

It uses linear interpolation of unigrams, bigrams and trigrams as a smoothing technique for 

contextual probabilities, where probability distribution coefficients ɚ1, ɚ2 and ɚ3 are estimated by 

deleted interpolation. The algorithm consists in calculating maximum likelihood estimations for a 

sequence of words wié wT of length T, where t1...tT are elements of the tagset, and t-1, t0 and t T+1 

are beginning- and end-of-sequence markers (Brants 2000: 224). 

 
The core of TnT tagging algorithm is Viterbi beam search. Unknown words are handled with the 

help of suffix analysis proposed in (Samuelson, 1993); the list of suffixes is derived from a lexicon 

of rare words with a frequency less than a set value at the training stage. In addition to that, the 

tagger treats uppercase and lowercase words differently at both stages. TnT has a wide range of 

adjustable parameters: user can tune smoothing and suffix analysis techniques, choose how to 

handle unknown words and mark them in the output, get all the possible tags for a token with a 

probability higher than a given value etc. 

 

2.3. Hunpos  

Hunpos is an OCaml re-implementation of TnT functionality that shows competitive results both in 

accuracy and speed. It is also built on HMMs that estimate N-gram probabilities for a given 

sequence of words, but in contrast to TnT, available only as an executable, Hunpos has an open 

source code. Unlike traditional HMM-based taggers, Hunpos computes emission probabilities using 

both current and previous tags, which makes the error rate 10% lower (Hal§csy, Kornai, Oravecz 

2004: 210). For unseen words, Hunpos generates all possible labels and then assigns weights to 

them by the suffix guessing algorithm based on rare word distribution. If the tagger is provided with 

a full morphological lexicon as proposed in (Banko, Moore 2004), its performance on unseen words 

significantly improves. Hunpos training options include the order of tag transition probability, the 

order of emission probability, the maximum frequency of a word to be included in the lexicon and 

the maximum suffix length. 

 

2.4. Stanford POS tagger      

The Stanford Tagger (Toutanova 2003) is a MaxEnt POS tagger, which uses a bidirectional 

approach to building probabilistic models, i.e. it makes explicit use of both preceding and following 

tag contexts by means of a bidirectional dependency network representation. Additionally, it uses 

broad lexical features by conditioning on multiple consecutive words, i.e. the word itself, the 

preceding and the following words, which allows the model to learn facts about the frequent 



idiomatic word sequences. Quadratic regularization (Gaussian prior smoothing) is used to deal with 

overtraining. It also introduces a fine-grained modeling of unknown word features.  

 

2.5. SVMTool  

SVMTool (Gim®nez, Marquez 2004) is a highly configurable and easy to use language independent 

tagger based on Support Vector Machines. It implements a one-vs-all strategy where separate SVM 

classifiers are trained for each tag and the most confident tag from all the binary classifiers is 

selected while tagging. SVMTool can learn both from supervised and unsupervised data. For 

supervised learning it is possible to provide the tagger with additional information apart from the 

token and its tag. The learning process is controlled by means of a configuration file, which allows 

the user to specify such parameters as the size of the context window, the set of features used, 

feature filtering and SVM model compression, dictionary repairing, etc. It is also possible to provide 

lists of ambiguous tags and open classes of words and a backup lexicon containing words not 

present in the training corpus. User can choose between four available models for training. Tagging 

process is also highly configurable and makes it possible to set the direction, scheme and strategy of 

tagging, the number of passes, to provide the backup and lemma lexicons etc.  
 

2.6. Lapos  

Lapos is a C++ implementation of the perceptron-based POS tagging algorithm described in 

(Yoshimasa 2011), which uses the lookahead process with a proof of convergence. The training 

algorithm is an adaptation of margin perceptrons model (Krauth, Mezard 1987) with the difference 

that Lapos makes use of the states and their scores obtained from lookahead searches. Such an 

algorithm allows to tune the perceptron weight in such a way that the tagger can correctly choose the 

right action for the current state at each decision point given the information from the lookahead 

process. The lookahead mechanism considers possible sequences of future actions and the states 

realized by those sequences. The performance of Lapos in POS tagging, chunking and NER on 

English data is claimed to be competitive with state-of-the-art approaches. 

 

2.7. Citar  

Citar, a C++ library that provides POS tagging1, partly implements the algorithm used in TnT. It is 

also based on a trigram HMM, but with the linear interpolation smoothing. To produce probabilities, 

the tagger compiles lexicon and N-grams from the training data. The probabilities from the trigram 

model are smoothed by the interpolation function that tries to find the smooth parametrization of 

available data and to estimate the results at the intermediate point, which makes Citar both fast and 

accurate. 
 

2.8. Morfette  

Morfette is a data-driven probabilistic system for joint POS tagging and lemmatization developed 

specially for inflectional and agglutinative languages with rich morphology. It consists of three 

modules: two Maximum Entropy classifiers that predict morphological tags and lemmas and a 

decoder that searches for the best sequence of tag-lemma pairs in a given sequence. As the system 

does not use any finite lexicon, lemma classes are derived automatically and correspond to the 

shortest edit script between reversed word forms and lemmas. For a focus word wi in context c ɴ  C 

for each possible tag m ɴ M the model returns p(m|c), and for each possible lemma class l  ɴL the 

model returns p(l|c,m). The beam search keeps n-best sequences of (m, l) ɴ MĬL pairs up to the 

current position in the input sequence. The list of tag probabilities (m0, p0)... (mj , pj) is sorted in a 

decreasing order, and then the tags that do not satisfy a certain condition with a threshold value, are 

filtered out (Chrupağa, Dinu, Van Genabith 2008: 2-3). User can add an optional dictionary and 

                                                
1 There is also a Java version called Jitar. 



select the number of iterations for training the models, and choose the beam size and the number of 

n-best sequences to keep for tagging. Morfette also has a built-in evaluation module. 

 

2.9. Mystem and Pymorphy2  

Mystem (Segalovich 2003) and Pymorphy2 (Korobov 2015) are dictionary based morphological 

analysis and disambiguation systems widely used in various NLP projects. Mystem, originally 

developed by Ilya Segalovich for Yandex search engine, is built on Zaliznyakôs Russian Grammar 

Dictionary (in its base version for Russian). It uses a dictionary represented as a set of tries and can 

guess morphology of unknown words by looking at the closest words in the dictionary. Pymorphy2 

is a morphological analyzer and form generator developed by Mikhail Korobov, which uses 

OpenCorpora dictionaries with a set of linguistically motivated rules developed to enable 

morphological analysis and generation of out-of-vocabulary words observed in real-world 

documents. It is worth noting that due to their dictionary-based design these taggers cannot be 

retrained on a different corpus or dictionary.  Both systems have their own tagsets with specific lists 

of grammemes. Since some of the grammemes used in the RNC are either simplified or absent in 

these tagsets (e.g. Mystem does not use second dative or second accusative), it is impossible to fully 

convert them into the RNC format. That is why comparing the performance of these two taggers and 

the ones we trained on the RNC disambiguated corpus would have been inconsistent. Although 

Mystem and Pymorphy2 could not take part in the final experiment, we still wanted to present some 

evaluation of their performance. For this purpose, we compiled a reduced tagset valid for both these 

taggers and RNC (see conversion table in Appendix I) that helped us to make rough estimations of 

their accuracy and understand where they stand compared to the other taggers. Pymorphy achieved 

an accuracy of  90,65% and Mystem ï an accuracy of 96,43% on POS tags. 

 

3. Evaluation 

 

3.1. Memory   

Some of the systems require such an amount of RAM to train a model that an end user running them 

on an average machine simply cannot do it. We managed to carry out  cross-validation for Stanford 

POS tagger, SVMTool, Lapos and Morfette only on the 1/12 of our data (500,000 tokens) annotated 

only with POS tags (except for SVMTool), which is why we could not include these taggers in the 

final evaluation. However, their performance on the smaller test set was generally good, and the 

results can be found in Table 1.  

 

Accurac

y 

TreeTa

gger 

TnT HunPos Citar SVMTo

ol 

Stanfor

d 

Morfett

e 

Lapos 

POS 96,94% 96,19% 96,41% 94,76% 93,43% 95,82% 93,03% 20,07% 

All  tags 92,56% 89,24% 89,29% 86,10% 86,24% ï ï ï 

Table 1 
 

 

3.2. Time  

Train and test time can play the crucial role when one has to deal with large corpora, especially if 

morphological analysis is just one of the modules in a bigger system. Though taggers based on 

MaxEnt and SVM yield comparable or even slightly better results, than HMM-based taggers, their 

train/test cycle is orders of magnitude longer. Another major factor that affects the taggerôs speed is 

the implementation language: obviously, C and C++ taggers are much faster than others. TreeTagger 

appears to be the best system in this respect: it requires about 13 seconds to train a POS-only model 



on the  of 6 million corpus and about 9 seconds to tag the remaining  on an average machine. 

Although other HMM-based taggers outperform it in train time on the whole tagset, it is still the 

fastest in tagging. The average train and test time of other systems compared to TreeTagger is given 

in Table 2.  
 

 TreeTagger TnT HunPos Citar SVMTool Stanford Morfette Lapos 

Approach HMM, 

decision tree 

HMM HMM HMM SVM MaxEnt MaxEnt, 

average 

perceptron 

Margin 

perceptron, 

look ahead 

Language C++, Perl ANSI C OCaml C++ C++, Perl Java Haskell C++ 

Train (POS) ~ 12,78 sec Ĭ 1,5 Ĭ 5,5 Ĭ 0,8 Ĭ 1150,0 Ĭ 800,0 Ĭ 1550,0 Ĭ 1120,0 

Tag (POS) ~ 8,62 sec Ĭ 2,0 Ĭ 3,0 Ĭ 1,5 Ĭ 8,0 Ĭ 15,0 Ĭ 560,0 Ĭ 2000,0 

Train (All) ~ 601,59 sec Ĭ 0,05 Ĭ 0,3 Ĭ 0,05 Ĭ 25,0 ï  ï  ï  

Tag (All) ~ 32,33 sec Ĭ 1,5 Ĭ 2,5 Ĭ 5,5 Ĭ 20,0  ï  ï  ï  

Table 2 
 

3.3. Comparative results 

In the final experiment, four taggers ï TreeTagger, TnT, HunPos and Citar ï were trained and tested 

on the Russian National Disambiguated Corpus of 6 million tokens, and the results were evaluated 

by 5-fold cross-validation. Average accuracy scores for POS tags and the whole set of tags are given 

in Table 3. 
 

 TreeTagger TnT HunPos Citar 

Accuracy (POS) 96,94% 96,19% 96,41% 94,76% 

Accuracy (All tags) 92,56% 89,24% 89,29% 86,10% 

Table 3 
        

Although TreeTagger shows the best results on POS tags, the performance of other analyzers is less 

than a percent lower. When it comes to the complete morphological annotation, the gap between the 

taggers drops down to 0,2%. Such results are not surprising due to the similar base of algorithms 

used by all four taggers. 

 

4. Error analysis  

As the analysis of taggerôs errors can help a lot in improving its performance, we chose the tagger 

that achieved the highest score ï TreeTagger ï and examined its results, focusing on mistakes 

connected with homonymy. Such mistakes were grouped into three categories: caused by 

paradigmatic ambiguity (tokens with similar lemmas and word forms), caused by inter-word 

ambiguity (tokens with different lemmas but the same word forms) and caused by joint paradigmatic 

and inter-word ambiguity. The distribution of mistakes for POS tags for inter-word ambiguity, 

paradigmatic ambiguity and joint ambiguity classes are shown in Figure 1, Figure 2 and Figure 3 

respectively (see Appendix II). The most common mistakes (correct tag: tagger's output) are 

displayed along the horizontal axis, while the vertical axis shows their frequencies. Figures 4, 5 and 

6 represent the same for the whole tagset. The diagrams show that a very large number of mistakes 



is connected with homonymy, which turns out to be mostly paradigmatic homonymy for inflected 

words. A more detailed analysis of these mistakes, as done in (Sharoff 2015) for Mystem and TnT-

Russian, is a subject of future research, aimed at developing a tagger with a powerful 

disambiguation module. 

 

5. Conclusion  

In a series of tests on a corpus of 6 million tokens the highest accuracy of 96,94% on POS tags and 

of 92,56% on the whole tagset was achieved by TreeTagger. However, it has problems with various 

cases of morphological ambiguity as well as the other systems. We believe that the examination of 

errors caused by homonymy that we made will help us to develop a disambiguation algorithm, 

which will improve tagging quality for Russian.  
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Appendix I  
 

 

Converted Mystem Tags 

Mystem tag Resulting tag 

ADVPRO ADV-PRO 

ANUM A-NUM 

APRO A-PRO 

SPRO S-PRO 

Converted RNC tags  

RNC tag Resulting tag 

PRAEDIC-PRO PRAEDIC 

 

 

Converted Pymorphy2 Tags 

Pymorphy tag Resulting tag 

NOUN S 

ADJF A 

ADJS A 

COMP A 

VERB V 

INFN V 

PRTF V 

PRTS V 

GRND V 

NUMR NUM 

ADVB ADV 

NPRO S-PRO 

LATN NONLEX 

NUMB, intg NUM 



UNKN NONLEX 

Converted RNC Tags 

RNC tag Resulting tag 

A-PRO A 

ADV-PRO ADV 
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