
AUTOMATIC MORPHOLOGICAL ANALYSIS FOR RUSSIAN: A COMPARATIVE STUDY

Dereza O. V. (oksana.dereza@gmail.com),

Kayutenko D. A. (kayutenko@mail.ru),

Fenogenova A. S. (alenush93@gmail.com)

National Research University Higher School of Economics, Moscow, Russia

Abstract

In this paper we present a comparison of ten systems for automatic morphological analysis:

TreeTagger, TnT, HunPos, Lapos, Citar, Morfette, Mystem, Pymorhy, Stanford POS tagger and

SVMTool. Different training and tagging approaches are discussed together with the strengths and

weaknesses of each system. Probabilistic taggers were trained and tested on the Russian National

Disambiguated Corpus and achieved accuracy scores as high as 96,94% on POS tags and 92,56% on

the whole tagset. However, most of the existing taggers cannot resolve various cases of

morphological ambiguity and show a better performance for morphologically rich languages. We

believe that the detailed examination of errors caused by homonymy can help to solve the

disambiguation problem and to improve tagging results.

Keywords: automatic morphological analysis, POS tagging, disambiguation, taggers

ɸɺʊʆʄɸʊʀʏɽʉʂʀʁ ʄʆʈʌʆʃʆɻʀʏɽʉʂʀʁ ɸʅɸʃʀɿ ɼʃʗ ʈʋʉʉʂʆɻʆ ʗɿʓʂɸ:

ʉʈɸɺʅʀʊɽʃʔʅʓʁ ɸʅɸʃʀɿ ʉʀʉʊɽʄ

ɼʝʨʝʟʘ ʆ. ɺ. (oksana.dereza@gmail.com),

ʂʘʶʪʝʥʢʦ ɼ. ɸ. (kayutenko@mail.ru),

ʌʝʥʦʛʝʥʦʚʘ ɸ.ʉ. (alenush93@gmail.com)

ʅʀʋ ɺʐʕ, ʄʦʩʢʚʘ, ʈʦʩʩʠʷ

ʂʣʶʯʝʚʳʝ ʩʣʦʚʘ: ʘʚʪʦʤʘʪʠʯʝʩʢʠʡ ʤʦʨʬʦʣʦʛʠʯʝʩʢʠʡ ʘʥʘʣʠʟ, ʯʘʩʪʝʨʝʯʥʘʷ ʨʘʟʤʝʪʢʘ,

ʜʠʟʘʤʙʠʛʫʘʮʠʷ, ʪʘʛʛʝʨʳ

1. Introduction

The number of systems for automatic morphological analysis with a free license, both statistical and

dictionary-based, has reached a point where a thorough comparative analysis of their performance

on the same data is absolutely necessary. In this article, we discuss several taggers and various

approaches to POS tagging with their strengths and weaknesses. We trained and tested probabilistic

taggers on the Russian National Disambiguated Corpus, a fully annotated corpus for the Russian

language; as for dictionary-based analyzers mentioned in this article, we used their versions

inherently developed for Russian. In Section 2 we discuss different taggers and algorithms they use,

in Section 3 we describe the tests we run and the results we received, and in Section 4 we outline the

major types of mistakes made by TreeTagger, which is the winner of our competition.

2. Taggers

For our research, we tested ten part-of-speech taggers, which are all free licensed and for the most

part open source: TreeTagger, TnT, HunPos, Lapos, Citar, Morfette, Mystem, Pymorhy, Stanford

POS tagger and SVMTool.

2.1. TreeTagger

TreeTagger (Schmid 1994) is an HMM-based tagger, which differs from the traditional probabilistic

taggers in the way it estimates the transition probabilities. In contrast to the N-gram taggers that

typically use smoothing to deal with the sparsity of the training data, TreeTagger uses a binary

decision tree, built recursively from a training set of trigrams, to obtain estimates of transition

probabilities. The decision tree automatically determines the appropriate size of the context which is

used to estimate the probabilities. Possible contexts are not only N-grams, but also other kinds of

contexts such as e.g. (tag-1 = ADJ and tag-2 != ADJ and tag-2 != DET). The tagger is also capable of

assigning tags to unknown words using a suffix lexicon organized in a tree for this purpose. At the

tagging stage user can provide the tagger with lists of tokens to be added to the initial lexicon and

choose the values to assign to tokens with zero frequencies. At the training stage user can provide

the tagger with additional lexicon lists.

2.2. TnT

TrigramsônôTags (TnT) is a statistical part-of-speech tagger based on second order Markov models.

It uses linear interpolation of unigrams, bigrams and trigrams as a smoothing technique for

contextual probabilities, where probability distribution coefficients ɚ1, ɚ2 and ɚ3 are estimated by

deleted interpolation. The algorithm consists in calculating maximum likelihood estimations for a

sequence of words wié wT of length T, where t1...tT are elements of the tagset, and t-1, t0 and t T+1

are beginning- and end-of-sequence markers (Brants 2000: 224).

The core of TnT tagging algorithm is Viterbi beam search. Unknown words are handled with the

help of suffix analysis proposed in (Samuelson, 1993); the list of suffixes is derived from a lexicon

of rare words with a frequency less than a set value at the training stage. In addition to that, the

tagger treats uppercase and lowercase words differently at both stages. TnT has a wide range of

adjustable parameters: user can tune smoothing and suffix analysis techniques, choose how to

handle unknown words and mark them in the output, get all the possible tags for a token with a

probability higher than a given value etc.

2.3. Hunpos

Hunpos is an OCaml re-implementation of TnT functionality that shows competitive results both in

accuracy and speed. It is also built on HMMs that estimate N-gram probabilities for a given

sequence of words, but in contrast to TnT, available only as an executable, Hunpos has an open

source code. Unlike traditional HMM-based taggers, Hunpos computes emission probabilities using

both current and previous tags, which makes the error rate 10% lower (Hal§csy, Kornai, Oravecz

2004: 210). For unseen words, Hunpos generates all possible labels and then assigns weights to

them by the suffix guessing algorithm based on rare word distribution. If the tagger is provided with

a full morphological lexicon as proposed in (Banko, Moore 2004), its performance on unseen words

significantly improves. Hunpos training options include the order of tag transition probability, the

order of emission probability, the maximum frequency of a word to be included in the lexicon and

the maximum suffix length.

2.4. Stanford POS tagger

The Stanford Tagger (Toutanova 2003) is a MaxEnt POS tagger, which uses a bidirectional

approach to building probabilistic models, i.e. it makes explicit use of both preceding and following

tag contexts by means of a bidirectional dependency network representation. Additionally, it uses

broad lexical features by conditioning on multiple consecutive words, i.e. the word itself, the

preceding and the following words, which allows the model to learn facts about the frequent

idiomatic word sequences. Quadratic regularization (Gaussian prior smoothing) is used to deal with

overtraining. It also introduces a fine-grained modeling of unknown word features.

2.5. SVMTool

SVMTool (Gim®nez, Marquez 2004) is a highly configurable and easy to use language independent

tagger based on Support Vector Machines. It implements a one-vs-all strategy where separate SVM

classifiers are trained for each tag and the most confident tag from all the binary classifiers is

selected while tagging. SVMTool can learn both from supervised and unsupervised data. For

supervised learning it is possible to provide the tagger with additional information apart from the

token and its tag. The learning process is controlled by means of a configuration file, which allows

the user to specify such parameters as the size of the context window, the set of features used,

feature filtering and SVM model compression, dictionary repairing, etc. It is also possible to provide

lists of ambiguous tags and open classes of words and a backup lexicon containing words not

present in the training corpus. User can choose between four available models for training. Tagging

process is also highly configurable and makes it possible to set the direction, scheme and strategy of

tagging, the number of passes, to provide the backup and lemma lexicons etc.

2.6. Lapos

Lapos is a C++ implementation of the perceptron-based POS tagging algorithm described in

(Yoshimasa 2011), which uses the lookahead process with a proof of convergence. The training

algorithm is an adaptation of margin perceptrons model (Krauth, Mezard 1987) with the difference

that Lapos makes use of the states and their scores obtained from lookahead searches. Such an

algorithm allows to tune the perceptron weight in such a way that the tagger can correctly choose the

right action for the current state at each decision point given the information from the lookahead

process. The lookahead mechanism considers possible sequences of future actions and the states

realized by those sequences. The performance of Lapos in POS tagging, chunking and NER on

English data is claimed to be competitive with state-of-the-art approaches.

2.7. Citar

Citar, a C++ library that provides POS tagging1, partly implements the algorithm used in TnT. It is

also based on a trigram HMM, but with the linear interpolation smoothing. To produce probabilities,

the tagger compiles lexicon and N-grams from the training data. The probabilities from the trigram

model are smoothed by the interpolation function that tries to find the smooth parametrization of

available data and to estimate the results at the intermediate point, which makes Citar both fast and

accurate.

2.8. Morfette

Morfette is a data-driven probabilistic system for joint POS tagging and lemmatization developed

specially for inflectional and agglutinative languages with rich morphology. It consists of three

modules: two Maximum Entropy classifiers that predict morphological tags and lemmas and a

decoder that searches for the best sequence of tag-lemma pairs in a given sequence. As the system

does not use any finite lexicon, lemma classes are derived automatically and correspond to the

shortest edit script between reversed word forms and lemmas. For a focus word wi in context c ɴ C

for each possible tag m ɴ M the model returns p(m|c), and for each possible lemma class l ɴL the

model returns p(l|c,m). The beam search keeps n-best sequences of (m, l) ɴ MĬL pairs up to the

current position in the input sequence. The list of tag probabilities (m0, p0)... (mj , pj) is sorted in a

decreasing order, and then the tags that do not satisfy a certain condition with a threshold value, are

filtered out (Chrupağa, Dinu, Van Genabith 2008: 2-3). User can add an optional dictionary and

1 There is also a Java version called Jitar.

select the number of iterations for training the models, and choose the beam size and the number of

n-best sequences to keep for tagging. Morfette also has a built-in evaluation module.

2.9. Mystem and Pymorphy2

Mystem (Segalovich 2003) and Pymorphy2 (Korobov 2015) are dictionary based morphological

analysis and disambiguation systems widely used in various NLP projects. Mystem, originally

developed by Ilya Segalovich for Yandex search engine, is built on Zaliznyakôs Russian Grammar

Dictionary (in its base version for Russian). It uses a dictionary represented as a set of tries and can

guess morphology of unknown words by looking at the closest words in the dictionary. Pymorphy2

is a morphological analyzer and form generator developed by Mikhail Korobov, which uses

OpenCorpora dictionaries with a set of linguistically motivated rules developed to enable

morphological analysis and generation of out-of-vocabulary words observed in real-world

documents. It is worth noting that due to their dictionary-based design these taggers cannot be

retrained on a different corpus or dictionary. Both systems have their own tagsets with specific lists

of grammemes. Since some of the grammemes used in the RNC are either simplified or absent in

these tagsets (e.g. Mystem does not use second dative or second accusative), it is impossible to fully

convert them into the RNC format. That is why comparing the performance of these two taggers and

the ones we trained on the RNC disambiguated corpus would have been inconsistent. Although

Mystem and Pymorphy2 could not take part in the final experiment, we still wanted to present some

evaluation of their performance. For this purpose, we compiled a reduced tagset valid for both these

taggers and RNC (see conversion table in Appendix I) that helped us to make rough estimations of

their accuracy and understand where they stand compared to the other taggers. Pymorphy achieved

an accuracy of 90,65% and Mystem ï an accuracy of 96,43% on POS tags.

3. Evaluation

3.1. Memory

Some of the systems require such an amount of RAM to train a model that an end user running them

on an average machine simply cannot do it. We managed to carry out cross-validation for Stanford

POS tagger, SVMTool, Lapos and Morfette only on the 1/12 of our data (500,000 tokens) annotated

only with POS tags (except for SVMTool), which is why we could not include these taggers in the

final evaluation. However, their performance on the smaller test set was generally good, and the

results can be found in Table 1.

Accurac

y

TreeTa

gger

TnT HunPos Citar SVMTo

ol

Stanfor

d

Morfett

e

Lapos

POS 96,94% 96,19% 96,41% 94,76% 93,43% 95,82% 93,03% 20,07%

All tags 92,56% 89,24% 89,29% 86,10% 86,24% ï ï ï

Table 1

3.2. Time

Train and test time can play the crucial role when one has to deal with large corpora, especially if

morphological analysis is just one of the modules in a bigger system. Though taggers based on

MaxEnt and SVM yield comparable or even slightly better results, than HMM-based taggers, their

train/test cycle is orders of magnitude longer. Another major factor that affects the taggerôs speed is

the implementation language: obviously, C and C++ taggers are much faster than others. TreeTagger

appears to be the best system in this respect: it requires about 13 seconds to train a POS-only model

on the of 6 million corpus and about 9 seconds to tag the remaining on an average machine.

Although other HMM-based taggers outperform it in train time on the whole tagset, it is still the

fastest in tagging. The average train and test time of other systems compared to TreeTagger is given

in Table 2.

 TreeTagger TnT HunPos Citar SVMTool Stanford Morfette Lapos

Approach HMM,

decision tree

HMM HMM HMM SVM MaxEnt MaxEnt,

average

perceptron

Margin

perceptron,

look ahead

Language C++, Perl ANSI C OCaml C++ C++, Perl Java Haskell C++

Train (POS) ~ 12,78 sec Ĭ 1,5 Ĭ 5,5 Ĭ 0,8 Ĭ 1150,0 Ĭ 800,0 Ĭ 1550,0 Ĭ 1120,0

Tag (POS) ~ 8,62 sec Ĭ 2,0 Ĭ 3,0 Ĭ 1,5 Ĭ 8,0 Ĭ 15,0 Ĭ 560,0 Ĭ 2000,0

Train (All) ~ 601,59 sec Ĭ 0,05 Ĭ 0,3 Ĭ 0,05 Ĭ 25,0 ï ï ï

Tag (All) ~ 32,33 sec Ĭ 1,5 Ĭ 2,5 Ĭ 5,5 Ĭ 20,0 ï ï ï

Table 2

3.3. Comparative results

In the final experiment, four taggers ï TreeTagger, TnT, HunPos and Citar ï were trained and tested

on the Russian National Disambiguated Corpus of 6 million tokens, and the results were evaluated

by 5-fold cross-validation. Average accuracy scores for POS tags and the whole set of tags are given

in Table 3.

 TreeTagger TnT HunPos Citar

Accuracy (POS) 96,94% 96,19% 96,41% 94,76%

Accuracy (All tags) 92,56% 89,24% 89,29% 86,10%

Table 3

Although TreeTagger shows the best results on POS tags, the performance of other analyzers is less

than a percent lower. When it comes to the complete morphological annotation, the gap between the

taggers drops down to 0,2%. Such results are not surprising due to the similar base of algorithms

used by all four taggers.

4. Error analysis

As the analysis of taggerôs errors can help a lot in improving its performance, we chose the tagger

that achieved the highest score ï TreeTagger ï and examined its results, focusing on mistakes

connected with homonymy. Such mistakes were grouped into three categories: caused by

paradigmatic ambiguity (tokens with similar lemmas and word forms), caused by inter-word

ambiguity (tokens with different lemmas but the same word forms) and caused by joint paradigmatic

and inter-word ambiguity. The distribution of mistakes for POS tags for inter-word ambiguity,

paradigmatic ambiguity and joint ambiguity classes are shown in Figure 1, Figure 2 and Figure 3

respectively (see Appendix II). The most common mistakes (correct tag: tagger's output) are

displayed along the horizontal axis, while the vertical axis shows their frequencies. Figures 4, 5 and

6 represent the same for the whole tagset. The diagrams show that a very large number of mistakes

is connected with homonymy, which turns out to be mostly paradigmatic homonymy for inflected

words. A more detailed analysis of these mistakes, as done in (Sharoff 2015) for Mystem and TnT-

Russian, is a subject of future research, aimed at developing a tagger with a powerful

disambiguation module.

5. Conclusion

In a series of tests on a corpus of 6 million tokens the highest accuracy of 96,94% on POS tags and

of 92,56% on the whole tagset was achieved by TreeTagger. However, it has problems with various

cases of morphological ambiguity as well as the other systems. We believe that the examination of

errors caused by homonymy that we made will help us to develop a disambiguation algorithm,

which will improve tagging quality for Russian.

References

1. Banko M., Moore R. C. (2004), Part of speech tagging in context, Proceedings of the 20th

international conference on Computational Linguistics. ï Association for Computational

Linguistics, pp. 556.

2. Brants T. (2000), TnT: a statistical part-of-speech tagger, Proceedings of the sixth

conference on Applied natural language processing. ï Association for Computational

Linguistics, pp. 224-231.

3. Chrupağa G., Dinu G., Van Genabith J. (2008), Learning morphology with morfette.

4. Gim®nez J., Marquez L. (2004), Fast and accurate part-of-speech tagging: The SVM

approach revisited, Recent Advances in Natural Language Processing III, pp. 153-162.

5. Hal§csy P., Kornai A., Oravecz C. (2007), HunPos: an open source trigram tagger,
Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration

sessions. ï Association for Computational Linguistics, pp. 209-212.

6. Krauth W., M®zard M. (1987), Learning algorithms with optimal stability in neural
networks, Journal of Physics A: Mathematical and General. Vol. 20. ï ˉ. 11., pp. L745.

7. Ratnaparkhi A. et al. (1996), A maximum entropy model for part-of-speech tagging,

Proceedings of the conference on empirical methods in natural language processing. Vol. 1.

ï pp. 133-142.

8. Samuelsson C. (1993), Morphological tagging based entirely on Bayesian inference, 9th

Nordic conference on computational linguistics.

9. Schmid H. (1994), Probabilistic part-of-speech tagging using decision trees, Proceedings of

the international conference on new methods in language processing. Vol. 12. ï pp. 44-49.

10. Seddah D. et al. (2010), Lemmatization and lexicalized statistical parsing of morphologically

rich languages: the case of French, Proceedings of the NAACL HLT 2010 First Workshop

on Statistical Parsing of Morphologically-Rich Languages. ï Association for Computational

Linguistics, pp. 85-93.

11. Segalovich I., 2003, A Fast Morphological Algorithm with Unknown Word Guessing

Induced by a Dictionary for a Web Search Engine, MLMTA, pp. 273-280.

12. Toutanova K., Klein D., Manning C., and Singer Y. (2003), Feature-Rich Part-of-Speech

Tagging with a Cyclic Dependency Network. Proceedings of HLT-NAACL 2003, pp. 252-

259.

13. Tsuruoka Y., Miyao Y., Kazama J. (2011), Learning with lookahead: can history-based

models rival globally optimized models? Proceedings of the Fifteenth Conference on

Computational Natural Language Learning. ï Association for Computational Linguistics,

pp. 238-246.

14. Korobov M. (2015), Morphological Analyzer and Generator for Russian and Ukrainian

Languages, Analysis of Images, Social Networks and Texts, pp. 320-332.

15. ʐʘʨʦʚ ʉ.ɸ., ɹʝʣʠʢʦʚ ɺ.ʀ., ʂʦʧʳʣʦʚ ʅ.ʖ., ʉʦʨʦʢʠʥ ɸ.ɸ., ʐʘʚʨʠʥʘ ʊ.ʆ. (2015),

ʂʦʨʧʫʩ ʩ ʘʚʪʦʤʘʪʠʯʝʩʢʠ ʩʥʷʪʦʡ ʤʦʨʬʦʣʦʛʠʯʝʩʢʦʡ ʥʝʦʜʥʦʟʥʘʯʥʦʩʪʴʶ: ʢ ʤʝʪʦʜʠʢʝ

ʣʠʥʛʚʠʩʪʠʯʝʩʢʠʭ ʠʩʩʣʝʜʦʚʘʥʠʡ.

Appendix I

Converted Mystem Tags

Mystem tag Resulting tag

ADVPRO ADV-PRO

ANUM A-NUM

APRO A-PRO

SPRO S-PRO

Converted RNC tags

RNC tag Resulting tag

PRAEDIC-PRO PRAEDIC

Converted Pymorphy2 Tags

Pymorphy tag Resulting tag

NOUN S

ADJF A

ADJS A

COMP A

VERB V

INFN V

PRTF V

PRTS V

GRND V

NUMR NUM

ADVB ADV

NPRO S-PRO

LATN NONLEX

NUMB, intg NUM

UNKN NONLEX

Converted RNC Tags

RNC tag Resulting tag

A-PRO A

ADV-PRO ADV

Appendix II

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

