AUTOMATIC MORPHOLOGICAL ANALYSIS FOR RUSSIAN: A COMPARATIVE STUDY

Dereza O. V.dksana.dereza@gmail.cdm

Kayutenko D. A. kayutenko@mail.r)y

Fenogenova A. Salenush93@gmail.com

National Research University Higher School of Economics, MosBussia

Abstract

In this paper we present a comparison of ten systems for automatic morphological analysis
TreeTagger, TnT, HunPos, Lapos, Citar, Morfette, Mystem, Pymorhy, Stanford POS tagger an
SVMTool. Different training and tagging approaclage discussed together with the strengths and
weaknesses of each system. Probabilistic taggers were trained and tested on the Russian Natic
Disambiguated Corpus and achieved accuracy scores as high as 96,94% on POS tags and 92,569
the whole tagsetHowever, most of the existing taggers cannot resolve various cases of
morphological ambiguity and show a better performance for morphologically rich languages. We
believe that the detailed examination of errors caused by homonymy can help to solve th
disanbiguation problem and to improve tagging results.

Keywords: automatic morphological analysis, POS tagging, disambiguation, taggers

¢luvf{fovrRYyrusrRE [[{AJJJLIRY[HSRE ¢1 0] R) rfc
gt ¢l 1 RULSP1 38 0V ¢JRY wREU[S

[4 t6J L Ookgana.déreza@gmaibm),

s Ot Isj dz¢ kayytenko@mail.{y

A dzts G | dztsae®usiP3@gmail.com

1RULU 1z¢, [tMCo0O, thmdw

szt yjor j mMdztso O: QolssBkBOIsdyd MEd?2 BsteW sdztse d .,
HJLOMBBdGeEZOYdqw, IsOcaGyj ter

1. Introduction

The number of systems for automatic morphological analysis with a free license, both statistical ar
dictionarybased, has reached a point where a thorough comparative analysis of their performanc
on the same data is absolutely necessary. Indiftisle, we discuss several taggers and various
approaches to POS tagging with their strengths and weaknesses. We trained and tested probabili
taggers on the Russian National Disambiguated Corpus, a fully annotated corpus for the Russi
language; as for didnarybased analyzers mentioned in this article, we used their versions
inherently developed for Russian. In Section 2 we discuss different taggers and algorithms they us
in Section 3 we describe the tests we run and the results we received, andim Seioutline the
major types of mistakes made by TreeTagger, which is the winner of our competition.

2. Taggers
For our researctwe tested ten padf-speech taggers, which are all free licensed and for the most

part open source: TreeTagger, TiHynPos, Lapos, Citar, Morfette, Mystem, Pymorhy, Stanford
POS tagger and SVMTool.

2.1. TreeTagger

TreeTagger (Schmid 24) is an HMMbased tagger, which differs from the traditional probabilistic
taggers in the way it estimates the transition probabilities. In contrast to-ghenNtaggers that
typically use smoothing to deal with the sparsity of the training data, TggeTaises a binary
decision tree, built recursively from a training set of trigrams, to obtain estimates of transition
probabilities. The decision tree automatically determines the appropriate size of the context which
used to estimate the probabilitigdossible contexts are not onlygdams, but also other kinds of
contexts such as e.g. (tag ADJ and tag != ADJ and tag != DET). The tagger is also capable of
assigning tags to unknown words using a suffix lexicon organized in a tree for thisgauiypahe
tagging stage user can provide the tagger with lists of tokens to be added to the initial lexicon ar
choose the values to assign to tokens with zero frequencies. At the training stage user can provi
the tagger with additional lexicon lists.

2.2.TnT
TrigramsoénbdéTags (Jofispeech tagger dasexd orasedors ordec Madrkovprmdels.
It uses linear interpolation of unigrams, bigrams and trigrams as a smoothing technique fo
contextual probabilities, where probability distributiooefficientsay, @ andas are estimated by
deleted interpolation. The algorithm consists in calculating maximum likelihood estimations for a
sequence of wordsi@& wof length T, whereit..tr are elements of the tagset, andt and tr+1
are beginmg- and enebf-sequence markers (Brants 2000: 224).
-
argmax HP{!..,-|J..,-_1,1.,-_2]1’(?1:,-|£.,-] Ptryq|tr)

{1--- ! .f_].
The core of TnT tagging algorithm is Viterbi beam search. Unknown words are handled with the
help of suffix analysis proposed in (Samuelson, 1993); the list of suffixes is derived fromaa lexi
of rare words with a frequency less than a set value at the training stage. In addition to that, tt
tagger treats uppercase and lowercase words differently at both stages. TnT has a wide range
adjustable parameters: user can tune smoothing anct sumalysis techniques, choose how to
handle unknown words and mark them in the output, get all the possible tags for a token with
probability higher than a given value etc.

2.3. Hunpos

Hunpos is an OCaml fienplementation of TnT functionality that skke competitive results both in
accuracy and speed. It is also built on HMMs that estimatgalh probabilities for a given
sequence of words, but in contrast to TnT, available only as an executable, Hunpos has an op
source code. Unlike traditional HMidased taggers, Hunpos computes emission probabilities using
both current and previous tags, whi ch makes
2004: 210). For unseen words, Hunpos generates all possible labels and then assigns weights
them bythe suffix guessing algorithm based on rare word distribution. If the tagger is provided with
a full morphological lexicon as proposed in (Banko, Moore 2004), its performance on unseen word
significantly improves. Hunpos training options include the ooddang transition probability, the
order of emission probability, the maximum frequency of a word to be included in the lexicon anc
the maximum suffix length.

2.4. Stanford POS tagger

The Stanford Tagger (Toutanova 2003) is a MaxEnt POS tagdech uses a bidirectional
approach to building probabilistic models, i.e. it makes explicit use of both preceding and following
tag contexts by means of a bidirectional dependency network representation. Additionally, it use
broad lexical features by conditing on multiple consecutive words, i.e. the word itself, the
preceding and the following words, which allows the model to learn facts about the frequen

idiomatic word sequences. Quadratic regularization (Gaussian prior smoothing) is used to deal wi
overtraining. It also introduces a figgained modeling of unknown word features.

2.5. SVMTool

SVMTool (Gi m®nez, Marquez 2004) is a highly
tagger based on Support Vector Machines. It implements-assalkestrategy where separate SVM
classifiers are trained for each tag and the most confident tag from all the binary classifiers i
selected while tagging. SVMTool can learn both from supervised and unsupervised data. Fc
supervised learning it is possible provide the tagger with additional information apart from the
token and its tag. The learning process is controlled by means of a configuratiahiile allows

the user to specify such parameters as the size of the context window, the set of tisatlires
feature filtering and SVM model compression, dictionary repairing, etc. It is also possible to provide
lists of ambiguous tags and open classes of words and a backup lexicon containing words n
present in the training corpus. User can choose betfeeeavailable models for training. Tagging
process is ab highly configurable and makes it possible talsetdirection, scheme and strategy of
tagging, the number of passasprovide the backup and lemrexicons etc.

2.6. Lapos

Lapos is a C++ iplementation of the perceptrdmased POS tagging algorithm described in
(Yoshimasa 2011), which uses the lookahead process with a proof of convergence. The trainir
algorithm is an adaptation of margin perceptrons model (Krauth, Mezard 1987) with thendife

that Lapos makes use of the states and their scores obtained from lookahead searches. Suct
algorithm allows to tune the perceptron weight in such a way that the tagger can correctly choose tl
right action for the current state at each decisiontpgiven the information from the lookahead
process. The lookahead mechanism considers possible sequences of future actions and the st
realized by those sequences. The performance of Lapos in POS tagging, chunking and NER
English data is claimed tme competitive with statef-the-art approaches.

2.7. Citar

Citar, a C++ library that provides POS tagdingartly implements the algorithm used in TnT. It is
also based on a trigram HMM, but with the linear interpolation smoothing. To produce ptasabil

the tagger compiles lexicon andgdams from the training data. The probabilities from the trigram
model are smoothed by the interpolation function that tries to find the smooth parametrization o
available data and to estimate the results at tleenmediate point, which makes Citar both fast and
accurate.

2.8. Morfette

Morfette is a datariven probabilistic system for joint POS tagging and lemmatization developed
specially for inflectional and agglutinative languages with rich morphology. Isistsnof three
modules: two Maximum Entropy classifiers that predict morphological tags and lemmas and
decoder that searches for the best sequence -bdrtaga pairs in a given sequence. As the system
does not use any finite lexicon, lemma classes arwedeautomatically and correspond to the
shortest edit script between reverseatd formsand lemmas. For a focus word iw context ¢ C

for each possible tag m M the model returns p(m|c), and for each possible lemma clagsthe

model returns pjc,m). The beam search keepbest sequences of (,N)MT L pai rs up
current position in the input sequence. The list of tag probabilitiesptn. (m , p) is sorted in a
decreasing order, and then the tags that do not satisfy a certaitiocowith a threshold value, are
filtered out (Chr upaga3l). Ufei caruadd avi aptiondb diatianéry andh

1 There is also a Java version called Jitar.

select the number of iterations for training the models, and choose the beam size and the number
n-best sequences to keep fagging. Morfette also has a buiitt evaluation module.

2.9. Mystem and Pymorphy?2

Mystem (Segalovich 2003) and Pymorphy2 (Korobov 2015) are dictionary based morphologica
analysis and disambiguation systems widely used in various NLP projects. Mysigmally
devel oped by Ilya Segalovich for Yandex seal
Dictionary (in its base version for Russian). It uses a dictionary represented as a set of tries and c
guess morphology of unknown words by loakiat the closest words in the dictionary. Pymorphy2

is a morphological analyzer and form generator developed by Mikhail Korobov, which uses
OpenCorpora dictionaries with a set of linguistically motivated rules developed to enable
morphological analysis andjeneration of oubf-vocabulary words observed in reabrid
documents. It is worth noting that due to their dictioAamged design these taggers cannot be
retrained on a different corpus or dictionary. Both systems have their own tagsets with kgtscific

of grammemes. Since some of the grammemes used in the RNC are either simplified or absent
these tagsets (e.g. Mystem does not use second dative or second accusative), it is impossible to f
convert them into the RNC format. That is why compatime performance of these two taggers and
the ones we trained on the RNC disambiguated corpus would have been inconsistent. Althouc
Mystem and Pymorphy2 could not take part in the final experiment, we still wanted to present som
evaluation of theiperformance For this purpose, we compiled a reduced tagset valid for both these
taggers and RNC (see conversion table in Appendix I) that helped us to make rough estimations
their accuracy and understand where they stand compared to the other taggemnshyweiueved

an accuracy of 90,65% and Mystéran accuracy of 96,43% on POS tags.

3. Evaluation

3.1. Memory

Some of the systems require such an amount of RAM to train a model that an end user running the
on an average machine simply cannot do i Wanaged to carry out cresalidation for Stanford

POS tagger, SVMTool, Lapos and Morfette only on the 1/12 of our data (500,000 tokens) annotate
only with POS tags (except for SVMTool), which is why we could not include these taggers in the
final evalation. However, their performance on the smaller test set was generally good, and th
results can be found in Table 1.

Accurac| TreeTa| TnT | HunPos| Citar | SVMTo | Stanfor| Morfett | Lapos

y gger ol d e

POS 96,94% | 96,19% | 96,41% | 94,76% | 93,43%| 95,82%| 93,03%| 20,07%

All tags | 92,56% | 89,24% | 89,29% | 86,10% | 86,24% | | |
Table 1

3.2. Time

Train and test time can play the crucial role when one has to deal with large corpora, especially
morphological analysis is just one of the modules in a bigger system. Though taggers based ¢
MaxEnt and SVM yield comparable or even slightly better testhan HMMbased taggers, their
train/test cycle is orders of magnitude | ong
the implementation language: obviously, C and C++ taggers are much faster than others. TreeTagq
appears to be the &tesystem in this respect: it requires about 13 seconds to train-arfDRodel

on the of 6 million corpus and about 9 seconds to tag the remainiran an average machine.
Although other HMMbased taggers outperform it in train time on the whole tagsis still the
fastest in tagging. The average train and test time of other systems compared to TreeTagger is gi\
in Table 2.

TreeTagger | TnT HunPos | Citar SVMTool | Stanford | Morfette Lapos
Approach HMM, HMM HMM HMM [SVM MaxEnt | MaxEnt, Margin
decision tree average perceptron,
perceptron | look ahead
Language | C++, Perl ANSIC [OCaml [C++ C++, Perl [Java Haskell C++
Train (POS)| ~12,78sec |1 1, (7T 5, {7 o,|T 1157 80q7 155(7 112
Tag (POS) |~ 8,62 sec r 2,1 3,{(1r 1, 8,07l 15,1 560]I 20000
Train (All) [~60159sec|l O, (T O, {l o0,/ 25, | i i i
Tag (All) ~3233sec |1 1,|T 2,141 5,/ 20, | i i i
Table 2

3.3. Comparative results

In the final experiment, four taggeirsreeTagger, TnT, HunPos and Citawere trained antested

on the Russian National Disambiguated Corpus of 6 million tokens, and the results were evaluate
by 5fold crossvalidation. Average accuracy scores for POS tags and the whole set of tags are give
in Table 3.

TreeTagger | TnT HunPos Citar
Accuracy(POS) 96,94% 96,19% 96,41% 94,76%
Accuracy (All tags) | 92,56% 89,24% 89,29% 86,10%

Table 3

Although TreeTagger shows the best results on POS tags, the performance of other analyzers is |
than a percent lower. When it comes to the complete motwgical annotation, the gap between the
taggers drops down to 0,2%. Such results are not surprising due to the similar base of algorithr
used by all four taggers.

4. Error analysis

As the analysis of taggerds errors can help
that achieved the highest scdrelTreeTaggeri and examined its results, focusing on mistakes
connected with homonymy. Such mistakes wgmuped into threecategories: caused by
paradigmatic ambiguity (tokens with similar lemmas and word forms), caused byworter
ambiguity (tokens with different lemmas but the same word forms) and caused by joint paradigmati
and interword ambiguity. The distribution omistakes for POS tags for intetord ambiguity,
paradigmatic ambiguity and joint ambiguity classes are shown in Figure 1, Figure 2 and Figure .
respectively (see Appendix IlI). The most common mistakes (correct tag: tagger's output) ar
displayed along thhorizontal axis, while the vertical axis shows their frequencies. Figures 4, 5 and
6 represent the same for the whole tagset. The diagrams show that a very large number of mistal

is connected with homonymy, which turns out to be mostly paradigmatic lyomyofor inflected
words. A more detailed analysis of these mistakes, as done in (Sharoff 2015) for Mystem and Tn’
Russian, is a subject of future research, aimed at developing a tagger with a powerfL
disambiguation module.

5. Conclusion
In a series ofests on a corpus of 6 million tokens the highest accuracy of 96,94% on POS tags an

of 92,56% on the whole tagset was achieved by TreeTagger. However, it has problems with variot
cases of morphological ambiguity as well as the other systems. We bakg\thea examination of
errors caused by homonymy that we made will help us to develop a disambiguation algorithm
which will improve tagging quality for Russian.

References

1. Banko M., Moore R. C. (2004), Part of speech tagging in context, &timges of the 20th
international conference on Computational LinguisticsAssociation for Computational
Linguistics, pp. 556.

2. Brants T. (2000), TnT: a statistical paiftspeech tagger, Proceedings of the sixth
conference on Applied natural language pssing.i Association for Computational
Linguistics, pp. 22431.

3. Chrupaga G., Dinu G., Van Genabith J. (20

4. Gi m®nez J. Mar quez L . ok gpeeh)taggindgs alket SVM n d
approach revisited, Recenti®ances in Natural Language Processing Ill, pp-16G3

5. Hal 8§csy P. ., Kor nai A, Oravecz C. (2007

Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstratio
sessionsi. Association fotComputational Linguistics, pp. 2€812.

6. Kraut h W. , M®z ar d M. (1987), Learning g
networks, Journal of Physics A: Mathematical and Genéodl.20.71 -~ . 1 1. , pp.

7. RatnaparkhiA. et al. (1996), A maximum entropy model for pafispeech tagging,
Proceedings of the conference on empirical methods in natural language processing. Vol.
T pp. 133142.

8. Samuelsson C. (1993), Morphological tagging based entirely on Bayesian iefegthc
Nordic conference on computational linguistics.

9. Schmid H. (1994), Probabilistic pawf-speech tagging using decision trees, Proceedings of
the international conference on new methods in language proceSahd.2.i pp. 4449.

10.Seddah D. et a{2010), Lemmatization and lexicalized statistical parsing of morphologically
rich languages: the case of French, Proceedings of the NAACL HLT 2010 First Workshop
on Statistical Parsing of MorphologicalBich Languages. Association for Computational
Linguistics, pp. 883.

11.Segalovich 1., 2003, A Fast Morphological Algorithm with Unknown Word Guessing
Induced by a Dictionary for a Web Search Engine, MLMTA, pp-293.

12.Toutanova K., Klein D., Manning C., and Singer Y. (2003), FedRicd Partof-Speech
Tagging with a Cyclic Dependency NetwoRroceedings of HLINAACL 2003, pp. 252
259.

13.Tsuruoka Y., Miyao Y., Kazama J. (2011), Learning with lookahead: can hisased
models rival globally optimized models? Proceedings of the Fifteenth Conference on
Computational Natural Language Learninig.Association for Computational Linguistics,
pp. 238246.

14.Korobov M. (2015), Morphological Analyzer and Generator for Russian and Ukrainian
Languages, Analysis of Images, Social Networks and Texts, pf8320

15,z Otets9 ¢ o, Il jddése 1. R. , stsfr dzseo 1. 5. , s
sstfzm M OsaltsdkOIdyj MSd MmMdviIsts?2 BsteW sdzts e (1
dzddzcodmisduyud MSdr dMmMmdzj Hise Odzd 2 .

Appendix |

Converted Mystem Tags

Mystem tag Resulting tag
ADVPRO ADV-PRO
ANUM A-NUM
APRO A-PRO
SPRO S-PRO

Converted RNC tags

RNC tag Resulting tag

PRAEDIGPRO PRAEDIC
Converted Pymorphy2 Tags

Pymorphy tag Resulting tag

NOUN S

ADJF A

ADJS A

COMP A

VERB \Y

INFN \%

PRTF \Y

PRTS \%

GRND \Y

NUMR NUM

ADVB ADV

NPRO SPRO

LATN NONLEX

NUMB, intg NUM

UNKN

RNC tag

A-PRO

ADV-PRO

Converted RNC Tags

Resulting tag

Appendix Il

Number sorted mistakes. Ambiguity: Inter-word

3000 |-

2500 |-

2000 -
1500 |-

S2)LISIW JO 13qWINN

1000 |-----

500 |-

S:[LNI
0Yd-S:X3TNON
HLN3YVYdS
SINNN
0Yd-V:X3ITNON
A:[LNI

WNNY
A*X3TNON
AD1d3vud
WNN:WNNY
0Yd-Y'A
2103vdd:A
V:21d3v4d
X3TINON:S
S:0dd-v
S:04d-S
AQY:A
AQY'S
ALdvd
S:AQY
S:X3TNON
AAQY
1dVd'A
0Yd-S'S
S‘HIN3YVd
HIN3YVd'A
Y:AQY
21d3vddv
A‘HLIN3HYVYd
NS
04d-S:04d-v
SA

AQVY

SV

'S

NV

YA
0dd-Y-04d-S

Mistake pairs

Figure 1

Number sorted mistakes. Ambiguity: Paradigmatic
I

10000

sa)e3siW Jo JaquinN

AQY'S
S:21a3vd
HLN3YVd:DIa3vyd
0Yd-v:04d-S
0Yd-S:04d-AQY
0Yd-S:14vd
S:AQY

S:1Yvd
2103vydiud
0Yd-21a3vyd:DIa3vyd
WNN:DIa3vyd
21a3vyd:s
21a3vyd:AQY
0Yd-AQV:21a3vyd
S:04d-S
HLNIYVd:1YVd
WNN:AQY
0Yd-S'S

S:INOD
WNN:0Yd-AQY
WNNY:0Yd-Y
AQY:WNN
HLINIYVd:AQY
AQV:DIa3vdd
AQY:INOD
AQY:4d
0Yd-AQY:LY¥vd
(NOD:AQY
yd:AQy
AQY:L1¥vd
AQV:HINIYVd
Sy

[NOD:1uVd
0Yd-AQY:WNN
ES

1dvd:AQy
OYd-V:WNNY
0Yd-AQY:INOD
14vd:INOD
(NOD:0Yd-AQY

Mistake pairs

Figure 2

Number sorted mistakes. Ambiguity: Both paradigmatic and inter-word

14000 |---------

12000 |-

10000 |---------

8000 |-

Sa)eISIW J0 JIaquinN

6000 |-

4000 |-

2000 |-

Yd:1yvd
1¥vd:D1a3vyd
S:AQY
X3IINON:INOD
A:L¥vd
HLN3YYd:S
AQY:HINIHYd
¥:21a3vud
WNN:AQY
0Yd-AQY:04d-S
X3ITINON:S
HLNIYYdA
(NOD:04d-AQY
1yvd:AQY
0Yd-AQY:14Vd
¥d:s

VES
04d-S:04d-AQY
Sy
0Yd-V:14¥vd
AHINIHVd
VIAQY
AQY:0dd-AQY
AQY:1¥vd
0Yd-V:WNNY
14vd:04d-S
AQY:WNNN
21a3vyd:AQY
21a3vyd:1¥vd
0Yd-S:INOD
21a3VHdY
0Yd-S:AQY
AQY:D103Y4d
AQYY
04d-S:14vd
1¥vd:INOD
[NOD:1HYd
0Yd-Y:04d-S
0Yd-S:04d-Y
[NOD:04d-S

Mistake pairs

Figure 3

Inter-word

Number sorted mistakes. Ambiguity

- ueur'w’jd‘uab’s:ueur’u’|d‘uab’s
o ua)d‘y'hs wouy:ueur’y’bs‘wou’s
= dwod’D|g3vyd:dwod’y
A ueur'w’|d sui's:ueur’y’|d’sur's
= ueur'w’'bs’sul's:AQy

-2 ueur’y|d’sur’'s:ueur'w’d‘sui‘s

o wiue‘y'bs‘wou’s:uald’y bs'wouy

--FH dz'aadwiyoe’uesy’ydi'Bs AL YYd

w’hs’Aa1q'y:ueul'w’bs’sul’'s

[14vd:dz'1adwi‘yoe‘uesy’ydi'bs’a
5 ueul'w’|d‘uab’s:|d'uab’s
o dwod'y:dwod’'D1a3vd
o ueur’y'bsooe’s:wiue’w'bsyep’s
4 ueul'w’bs‘yep’s:ueul’y’bsaoe’s
H de’saead oipui‘yoe urydi’|d’A:de saead dipuiyoe’uey’ydi’jd’A
=9 AQv:us|d u’‘bs'wou’y
1 w'bs‘Aa1qy:eead ssed uely’yd ‘w’hs Aauq dopuedn
-7 ueul’y'bsdoe’siueul'wWBsep’S
= zdwod'y:zdwod'AQy
: H ueur’y'bs‘uab’s:wiue‘w’|d‘wou’s
=5 19eud'ssed’ueny’ydjd‘asiqg doued’A:d As1q'y
1 ueul’y'Hs‘wou’s:ueur'w’bs'uab’s
= 1d'A21q‘y:312eld ssed uesy’yd|d Aaiq doued s
o AQv:ueul‘'w'Bs’sul's
-+ zdwod'AQy:zdwod'y

Mistake pairs

Figure 4

--f22 19ead’ssed uesy’yd 'w'Hs Asiq doyied Arw'Hs ARIqY

H |d’sur'oud-S:|d sul'0dd-v

1 ueul'w’ps‘'uab’s:ueur’y’hs‘wou’s

1 uajd'y'bs wou’y:wiue’y'Hs‘'wou’s

1 de'w'bs’'sul'0yd-s:dg u‘bs'sul'0OUd-S

ueul'u‘Bs'sul'sS:HINIYYd

o de'w’'bs1ep’oyd-s:de ubsiep’'oud-s
" dwod'Agy:dwod’y

I |d'sur’Oud-v:1d'SuI'OYd-S

A dwod’y:dwod’Agy
= u'bs’'Aa1q’'v:AQY
5 D1a3vyd:u'bsAR1q'Y

i de'w'Bs 0] 0Yd-S:d g 'Uubs D0|'0Ud-S

800 |-

v S

i i i
o o o
(=)

2 & R
S2)e3SIW 4O JaqUINN

600 |-

200 ... Ji |8

100 b B

H de'w’hs’sul’'oyd-s:de|d1ep 0Yd-S
A AQv:u'bs'Aa1q'y

ic

: Paradigmat

igui

Number sorted mistakes. Amb

14000 |---

12000 |-----

10000 |------
8000 |-
6000 -

S9)BISIW JO 13qWINN

4000 |------

2000 f-----

ueur‘u‘|d>oe‘s:ueul‘u’jd‘wou’s
ueul‘u‘|d‘wou’s:ueur‘u’jd’ooe’s
WOU'WNN:22B NN
ueul’y'bs‘uab’s:ueur’y'hsiep’s
ueul’y’bsyep’s:ueur’y'hso0|’s
ua|d'w’bs'uab’y:uajd'u’bs‘uab’y
wiue‘w’hsdoe’s:wiue’w’hs‘uab’s
ueur’y'bsoj's:ueul’y'bs‘uab’s
ueul'yjdooe’s:ueur’y’bs‘uab’s
ua|d‘ueur'w‘fs'doe y:uajd‘w’Hs wou'y
uajd‘ueuru’bsdoe’y:uajd u’bs wou'y
12eud d1puryoe’uely’yd w’hs A3aead dipuryoe’yd wbs A
208’ WNN:Wou' WNN
ueui'u‘bs‘usb’s:ueul’u’jd‘wou’s
ueur’y'bs‘uab’s:ueur’y'bsoo|'s
uajd‘w’bs’sur'y:uajd u‘bs'suly
ueur’y'|d‘wou’s:ueur’y’|d>oe’s
ueui‘u’‘fs'usbh’s:ueur‘u’jdooe’s
0Yd-AQY:INOD
ueur’y'|daoe‘s:ueul’y’|d‘wou’s
ueul’y'bs'doe’s:ueur’y’ bs'wou’s
w'bs‘wou‘Qyd-y:ueur'w’'Hs'doe oud-v
ueul’y'bs‘wou’s:ueur’y’bsdoe’s
ua|d‘u‘hs‘wou‘y:uajd'ueul’u‘bs’doe’y
wiue‘w’|d‘uab’s:wiue‘w’|ddoe’s
19vd:INOD
ueul’y'bs‘usbh‘s:ueul’y|d‘wou’s
wiue'w’'hs‘usab’s:wiue 'w’hsdoe’s
ua|d‘ueur’|d'>oe y:uaid’|d wou’y
ueur‘'w’jd'wou’s:ueur‘w’dooe’s
ueul’y'bs‘uab’s:ueur’yjdooe’s
ua|d‘|d‘wou‘y:uajd‘ueur’|dooe’y
ueul'w’‘jdooe’'s:ueur’w’jd‘wou’s
ueul’y’bs*d0|'s:ueur’y’bsiep’s
ua|d‘w’hs‘wouy:ua|d ueur'whsooe’y
ueul‘u‘hs’>oe‘s:ueUl‘U‘DS WoU’S
[NOD:0¥d-AQY
ueul'u‘bs‘wou’s:ueur‘u‘bs’ooe’s
ueul'w’bs doe‘s:ueul’w’bs‘wou’s
ueul'w’bs‘wou’s:ueur’w’bsaoe’s

Mistake pairs
igure 5

F

Figure 6

