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quence to extract abstract paradigms from inflectional tables. Then we ex-
periment with the automatic detection of paradigms using a linear classifier
with lexeme suffixes and prefixes as features. We show that Russian noun
paradigms could be automatically detected with 77% accuracy per para-
digm and 93% accuracy per word form, for Russian verbs per-paradigm
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JaHHaa paboTa nocesilleHa aBTOMaTUY4eCkoMy OMpeneneHunto 1 Knaccu-
dukaumm Mop@PoNormiecknx napagurm Ans pycckoro a3bika. AGCTpakT-
Hble Mopdonornyeckme napagurMmbl BbIAEASIOTCA C MOMOLLbIO MeToaa
Hambonblueln obuien nognocnenoBaTesibHOCTU. OCHOBHasA YacTb paboTa
noceseHa Npobneme BblYUCNEHNS MONHON NapaaurMel 41 HEM3BECTHOM
JNIeKCEeMbI, A9 4ero NpUMeHsieTca NuHelriHaa knaccudukauus. B kayectse
NPU3HaKoB A5 knaccudukaumm ncrnonb3yoTcsa npedukebl U cydduUKehb
[aHHOM nekceMbl. Mbl nokaselBaem, 4TO abcTpakTHaa napagmrma MoxeT
6bITb ONpefeneHa ¢ TOYHOCTbIO 77% ANs CyLeCcTBUTENbHbIX U 76% Ana
rnarosioB, B TO BpeMsi Kak TO4HOCTb Mo cnosodopmam aocturaet 93 1 89%.
B paboTe BBOAUTCS HOBLIA anropuTM aBTOMATUYECKOro OnpenefieHus
MOpPdONOrnyeckon napagurmbl, UCMONb3YIOLWNA KOPMNYCHYK uHbOpmMa-
unto. OH NO3BONSIET AOCTUYb KadecTBa B 82% 0119 UMEHHbIX 1 86% ans rna-
roflbHbIX NapagurmM, B TO BPeEMS Kak TOYHOCTb MO cnoBodopmMam B 060uMx
cnyvyasx CTaHOBUTCS paBHOM 95%.

KnioueBble cnoea: mopdonormyeckas napaaurma, abcrpakTHas napa-
aurmMa, aBToMmatudeckoe onpeaeneHve napaanrm, asToMmatnyeckas Knac-
cudukaumsa napagmrm, KOpNycHon MeToz onpeaeneHns napagmurm

1. Introduction

The automatic induction and learning of morphological paradigms is very popu-
lar in the last years. State-of-the-art works include [Ahlberg et al., 2015] and [Nico-
lai et al., 2015], but several other papers are also worth mentioning (Ahlberg et al.,
2014], [Durrett, DeNero, 2013]). This task has various applications, e.g. synthesis
of surface word forms in machine translation and the automatic extension of morpho-
logical resources, such as wiktionary.org. The methods developed for paradigm learn-
ing can also be used in the automatic morphological analysis, e.g. for POS-tagging
or lemmatization.
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The automatic induction of morphological paradigms has a long history in the Russian
linguistic tradition. The seminal work of A. A. Zaliznyak “Russkoe imennoe slovoizmen-
enie” [Zaliznyak, 2002] solves exactly this problem: how the complete description of mor-
phological inflection could be recovered from empirical data. If we reconsider the algorithm
of Zaliznyak from the computational point of view and omit the technical details specific
to Russian phonology, it is essentially based on the method of longest common subsequence
(LCS): the invariant part of inflected forms of the same lexeme is exactly their LCS. The
method of LCS for automatic induction of morphological paradigms was reintroduced
in works of Ahlberg, Hulden et al. ([Ahlberg et al., 2014], [Ahlberg et al., 2015]). However,
for the purposes of computational linguistics, automatic induction of morphological para-
digms from inflected tables is only the preliminary step. A more important question is how
to detect the paradigm label and hence the complete inflectional table using only the base
form of the lexeme. This problem is solved by machine learning techniques, using substrings
of the source lexeme (e.g., its prefixes or suffixes) as features for the classifier.

There are practically no works on automatic detection of morphological para-
digms for Russian: [Ahlberg et al., 2015] contains some results for noun declension but
the quality of the source data is too low to consider them significant. We reimplement
the method of Hulden for paradigm induction with several technical modifications
and use a linear classifier to derive these paradigms automatically from the lexeme.
Our algorithm is able to recover complete morphological paradigm both for Russian
nouns and verbs with accuracy of 77% for paradigms and 93 and 88% for word forms
respectively. We also demonstrate that the usage of corpora information improves the
percentage of correctly predicted paradigms up to 82% for nouns and 86% for verbs.

2. Abstract paradigms

For the compressed representation of morphological inflection we use the notion
of an abstract paradigm, introduced in [Ahlberg et al., 2014]. From the mathematical
point of view, a paradigm is a tuple of functions F = (fj, ..., f,,) taking the same variables
X,,...,X, €X¥, wheref,(x,, ...,x ) operates from (2*)"to X* ([Ahlberg et al., 2014], see also
[Zaliznyak, 2002]). Here X is the finite alphabet and £* denotes the set of all words
over this alphabet. Each of the functions f, corresponds to some grammatical mean-
ing c, the functions in set F are arranged according to a fixed order c, ...,c, of possible
grammatical meanings. Literally speaking, a paradigm is a mapping from variables
to strings. We use the term “abstract paradigm” to represent morphological paradigms
formally. An abstract paradigm is a tuple of strings containing variables x,,x,, ..., x, (the
variables are the same for all strings and have the same order elsewhere) and constant
fragments, which are the same for all lexemes satisfying the given paradigm. These
constant fragments vary between the forms of the same lexeme. On the contrary, the
variables have the same value for all inflected forms but differ from lexeme to lexeme.

Let us explain these formal terms on a short example. Consider the declension
tables of two Russian nouns kycok and necok. The paradigm function F is the same for
both of them; in the first case it takes the variables x, = xyc and x, =k, in the second
one—x, =TIIec, X, = K.
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Tab. 1. Abstract paradigm: an example

Grammeme Pattern F (xyc, k) F (mec, K)
Nom.Sg x,+o+x, KYCOK IIECOK
Nom.PI X, +x,+1 KyCKU IIeCKU
Gen.Sg x,+x,+a KyCKa rnecka
Gen.Pl X, +x,+0B KYCKOB MECKOB
Dat.Sg x,+x,+y KYCKY ecKy
Dat.Pl X, +x,+am KyCKaM rneckKkam
Acc.Sg x,+o+x, KYCOK IIECOK
Acc.Pl X, +x,+1 KyCKU IIeCKU
Instr.Sg x,+x,+om KYCKOM [IECKOM
Instr.P1 X, +x,+amMu KyCKaMu rnecKkaMu
Pr.Sg x,+x,+e KyCKe recke
Pr.P1 X, +x,+ax KycKax mecKax

Given the variable values, an abstract paradigm unambiguously determines the
complete inflectional table. When a pattern and a word form are known, usually there
is only one way to fit the pattern to the word: for example, the word mewok and the
pattern x,+o+x, yield a single combination of variable values x, =mem, x,=k. Never-
theless, applying the same pattern to the word Hocok results in two variants x,=H,
x,=cok and x,=Hoc, x, =K. If we take into account several possible patterns, the num-
ber of decompositions can grow up dramatically. However, the variables are extracted
not from a single word form, but from all the paradigm elements simultaneously,
which restricts the set of possible combinations.

3. Longest common subsequence

Consider again the abstract representation of morphological paradigms.
If we substitute strings of letters for the variables, these strings form a common subse-
quence of all generated words. In order to capture as much common material as pos-
sible, that subsequence should be the longest one. Therefore, the problem of paradigm
detection has been reduced to the task of finding the longest common subsequence.
We are not going to discuss the linguistic relevance of this approach and use it only
as an empirical procedure. However, several important questions emerge:

1. How to calculate the longest common subsequence algorithmically?

2. What subsequence to select when several subsequences have the same length?

3. How to extract variable values when the LCS is known?

For the first task we use finite automata. It is straightforward to construct an au-
tomaton recognizing all the common subsequences of given strings and then extract
the longest word this automaton accepts (we omit algorithmical details). Although,
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this automaton could be nondeterministic and an equivalent deterministic state
automaton may have much larger number of states (up to 2" where n is the number
of states of initial nondeterministic automaton). To prevent this exponential growth
we bound the length of gaps between the consequent letters of the subsequence,
as well as the gap before the first letter of the subsequence. This limitation is also jus-
tified from the linguistic point of view: consider two verb forms paamecmumscs and
pasmewycs, their LCS pasmec has length 6. However, c in the LCS is an artifact of the
method, not an element of common stem. Besides, alterations like cm/uy are among
the phenomena which are difficult to capture by LCS algorithm.

The construction of finite automata recognizing all common subsequences for
the words momoxk and okom is illustrated below. The edges contain not only the sym-
bols, but also the positions of these symbols in the words. This trick allows to simplify
the extraction of an abstract paradigm from the LCS.

Fig. 1. DSA for common subsequences of the word moTok and okoT

In the example above there are 3 longest common subsequences: 0o, ok, om. Pos-
sible variants of their positioning are shown in the table below.

Tab. 2. LCS for the words moTtok and okot

LCS LCS positioning variants
0-0 MOTOK, OKOT
0-T MOTOK, OKOT
O-T MOTOK, OKOT
0-K MOTOK, OKOT
0-K MOTOK, OKOT

Already in this artificial example there are multiple variants for LCS positioning.
The same problem emerges in practice: consider a partial declension table of the word
necok. There are two candidates for the LCS: nec-o and nec-x both of length 4.
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Tab. 3. Ambiguous LCS positioning: an example

Nom.Sg TeCcoK Nom.Sg MecokK
Gen.Pl TIeCKOM Gen.Pl TIeCKOM
Instr.Sg TIeCKOB Instr.Sg TeCKOB

We use two heuristics for disambiguation: the first selects the variant with the mini-
mal number of variables (variables are the maximal contiguous parts of the LCS). How-
ever, this heuristic does not give us a solution here: both subsequences consist of two vari-
ables. Then we apply our second heuristic: choose the variant with the least total length
of gaps. Then the variant mecok-meckoB-meckowm is preferred, since it leads to a single
gap of length 1 while its counterpart generates two such gaps (of total length 2).

4. Automatic detection of paradigms

In the previous section we have discussed the algorithm for morphological para-
digms induction. However, it is not a central problem of the paper; we are mainly inter-
ested in the automatic detection of such paradigms for unknown words. We consider
the following task: given an unknown word of a known part-of-speech (say, a noun
apka), determine its complete declension table. The algorithm selects one of many
potential variants, several of which are listed in Table 4.

Tab. 4. Multiple possible paradigms for the word apka

Paradigm Variables

1#1+b1#1+a#1+oB#1+y#1+am#1#1+p1#1+oMm#1+amu#l+e#1+ax | 1=apka
1+a#l+a#1+pi#l#1+e#1+am#1+y#1+p#1+oli#1+amu#l+e#1+ax | 1=apk
1#1+b1#1+a#1+oB#1+y#1+am#1#1+a#1+oB#1+amu#1+e#1+ax 1=apka
1+2+a#1+2+u#1+2+u#1+o0+2#1+2+e#1+2+am#1+2+y#1+2+u 1=ap,
#1+2+on#1+2+amu#1+2+e#1+2+ax 2=K

We may attempt to recover a correct paradigm using deterministic rules such
as “when a noun ends with a then this a is a flection, not a part of a stem” (coun-
terexample: 6akkapa) and if such word ends with “Cxa” for some consonant C then
o isinserted between C and k in genitive plural (counterexample: .nacka). However, all
such rules have counterexamples and their manual design is a very labour-intensive
task. Therefore we have decided to learn inflectional patterns automatically applying
algorithms of machine learning. We use as features all the suffixes! whose length does
not exceed the given maximum (say, 5). The suffixes are encoded as binary indicators;
for example, the word yuumens is described by a binary vector with five nonzero ele-
ments, corresponding to suffixes -», -1, -esiv} etc. (see Table 5 below). The absence
of a suffix in the training set is encoded by a special placeholder, in this case longer

1 We use the term “suffix” (“prefix”) for an arbitrary substring in the end (in the beginning)

without any regard to morphology
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suffixes are not taken into account since they were not observed in the training set ei-
ther. For example, if the suffix -1 was preceded only by e in the training set, then both
words mopasb and ¢acosns are encoded by a vector containing three ones for suffixes
-b, -1b and !nis} where ! denotes an unobserved letter.

Tab. 5. Feature encoding scheme

a K Ka |Jla | UK | pKa
apka 1 0 1 0 0 1
mKoJa 1 0 0 1 0 0
6K 0 1 0 0 1 0

Since prefixes carry no information about noun morphology, we do not use them
as features for noun paradigm prediction. In the case of verbs, conversely, they can
be used to determine verb aspect. If d is the maximal length of suffixes used as fea-
tures, then the number of possible features grows roughly exponentially with d and
may reach 20,000 for d = 5. To reduce training time and remove noisy features we re-
tain only a fixed percentage of the most unambiguous features. As the measure of am-
biguity for the feature f, we take max; P(c(L) = c|f;(L) = 1)—the probability of the
most frequent class provided f, is present. We also remove features which appear less
than 3 times in the training set.

5. Evaluation of paradigm classifier

We have evaluated our approach on Russian verbs and nouns. For both tasks
we took 5,000 most frequent words of the corresponding part of speech from the dic-
tionary of Lyashevskaya and Sharoff ([Lyashevskaya, Sharoff, 2009]). We automati-
cally downloaded complete inflectional tables from the Wiktionary (ru.wiktionary.
org). For nouns the tables contained at most 12 items for 6 cases and 2 numbers (sev-
eral cells in the paradigm could be empty, e.g. for pluralia tantum). Sometimes the
cell contained two values (for example, Instr.Sg. of first declension nouns), in this case
we always chose only the first form. We extracted 239 abstract paradigms for noun de-
clension, 69 of them contain more than 5 examples and 108—only a single example.
10 most frequent paradigms are listed in Table 11 of the Appendix.

In the case of verbs typical Wiktionary form for imperfect aspect contains 21 sim-
ple forms (https://ru.wiktionary.org/wiki/\%D0\%B6\%DO0\%B5\%DO0\%BB\%DO0\
%BO\%D1\%82\%D1\%8C) including infinitive and omitting composite future form
and empty cells. For paradigm induction we used only 13 of them: 6 present forms,
4 past, 2 forms of the imperative and the basic infinitive form. Even in such restricted
form verb conjugation demonstrate more irregularities then noun declension, so the
sample of 5,000 verbs contains 305 paradigms with 120 of them having 5 or more rep-
resentatives and 92—a single representative. 10 most frequent paradigms are shown
in Table 12. We bound maximal gap length by 2, therefore the algorithm does not
recognize c as part of the LCS in the examples like uepamscs/uepaewscs/uzpaiimecs.
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In our experiments we randomly separated the sample on 2 equal halves, using one
for testing and the other one for training. The results were averaged for 5 random splits.
In the case of nouns we did not use prefixes as features and bound suffix length d by 3,
5 or 7. The percentage p of selected features was 0.10, 0.25 or 0.5. In the case of verbs
we calculated the suffix length without the reflexive affixes -cs and -c». We also used the
prefix features with the maximal length of 2 for verb conjugation. To predict paradigm
labels we used the logistic regression classifier from sklearn package [Pedregosa et al.,
2011], which itself uses the LIBLINEAR library [Fan et al., 2008]. The results are pre-
sented in Table 6 and Table 7. We report both per-paradigm (the percentage of correctly
predicted abstract paradigms) and per-form (the fraction of correct word forms) accuracy.

Tab. 6. Prediction accuracy for noun paradigms classification

0.1 0.25 0.5
3 17719 9347|7726 9347|7725 93.47
5 | 7738 93.50| 7732 9348|7732 9348
7 7744 9345|7735 9343|7735 9343

Since the result of nouns is practically independent from the classifier param-
eters, we fix p=0.1 and d =5 in future experiments. We use the same setting for the
verbs task, however, in this case the impact of feature length is more significant.

Tab. 7. Prediction accuracy for verb paradigms classification

0.1 0.25 0.5
3 | 5141 79.96 | 51.41 79.96 | 51.41 79.94
5 [76.30 88.83|76.09 88.62|7594 88.62
7 |77.06 88.36|78.01 89.35|7796  89.38

We also study how the prediction quality changes with the size of the training set.
When there is little training data available, a lemma may not fit to all inflectional pat-
terns observed in training phase (say, a verb ends with -mu and all the infinitives in the
training set ended with -ms, -mbcs or -us). In such cases we allow the system consult
a complete list of paradigms, no matter whether they were observed in training. The
dependence between training data size and system performance is shown in Table 8.

Tab. 8. Train data percentage and performance quality

Training data fraction
Task 0.1 0.25 0.5 0.6 0.7 0.8
Nouns 71.76 75.05 77.38 77.95 77.88 77.40
91.15 92.32 93.50 93.70 93.77 93.84
Verbs 65.50 71.50 76.30 77.49 77.60 77.56
83.83 86.27 88.83 89.36 89.41 89.50
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6. Analysis of results

It is uninformative to compare results for different languages and even for different
datasets. As we know, the only experiment on paradigm detection for Russian nouns was
conducted by Ahlberg et al. in [Ahlberg et al., 2015], showing per-table accuracy of 66%
and per-form accuracy of 89%. However, they used data collected from Freeling ([Pa-
dro, Stanilovsky, 2012]), which is of much lower quality than ours. They also used 5-fold
cross-validation for performance evaluation, which means that 80% was left for training
instead of only 50% in our experiment. However, the results for other languages, such
as Catalan, French or Italian, reported in [Ahlberg et al., 2015] are much higher with per-
table accuracy of over 90%. We claim that corpus-free methods are incapable of reaching
comparable accuracy on Russian data due to the objective linguistic factors.

There are two main sources of errors in the case of noun paradigm predic-
tion: the first is animacy/inanimacy affecting the forms of accusative, the second
is -a/-vt in the form of Nom.PlL In both cases the correct category does not depend
on the surface form (consider goniwoHok vs 60uoHOK or 20s10¢ VS kosioc). The system also
fails to discriminate between masculine and feminine nouns ending with » (mo03025
vs koposb). It is obvious that these ambiguities cannot be resolved without corpus
statistics. We discuss this question in details in the next section.

For verbs the problem is more subtle. Often the mistake happens for the forms
of imperative mood, for example, *mpesoxcu is predicted instead of mpegoxcs or *no-
xumu for noxums. In such cases the forms or indicative mood are usually correct.
Another common source of mistakes are e/€é in verb flections (compare xsionHyms and
moakHymy). In this case the flection depends on the stress position in the infinitive
form, however, we removed the stress signs in our data since they are marked in-
consistently in Wiktionary itself. Such mistakes affect only several forms (imperative
or third person present tense). Errors of the second type touch practically all forms
of the paradigm. It often happens for the verbs ending on -ams (8eHuams vs kpuuams).
The system also fails in the case of phonetic alterations (ynusums/yHuaicy), especially
when they happen inside the stem (3sams/308y or ciams/uinio).

Summarizing, the spectrum of possible errors for Russian verb paradigm predic-
tion is wider than for Russian nouns, which explains lower per-form quality in the verb
prediction task. However, in both cases more training data does not help, as shown
in Table 8. We consider the sources of additional information in the next section.

7. Corpus-based methods of paradigm predictions

In this section we experiment with other features which might be helpful for
automatic paradigm detection. In the verb paradigm task incorrectly predicted forms
sometimes violate the rules of Russian phonology like in *ocywecmescs or *ucuesncs}
for ucuesnu. These incorrect forms might be rejected if we extend the model by pho-
nological features. This idea is realized as following:

First, we train a character n-gram model on the training data. Then we aug-
ment the algorithm with second classifier on the top of the first. It takes as features
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logarithmic probabilities predicted by the classifier on the first level as well as the
scores of the language model. If the basic classifier has predicted c, as paradigm label
for the lemma L, we generate all the formsw, ,...,w, of this lexeme according to the
paradigm; then we take as language model score the averaged sum

Z;'n=1 —log P (Wi )
m

s(L,¢;) =

where P (w, ) is the probability of word form w,, according to character ngram
model. We test two ways of accomodating the language model log-scores: in the first
case we use them as features of the linear classifier. In the second variant we used
language model scores only for filtering, discarding a paradigm c, if its score s (L,c)
is greater than s+ o where s is the lowest value among s (L,c,) and « is some rede-
fined constant. We used 5-gram language models trained on the set of word forms
from the training data and smoothed the model counts using Witten-Bell smooth-
ing ([Chen, Goodman, 1996]). The results for Nouns and Verbs tasks are presented
in Table 9, we used p=0.1 and d=5 for feature fraction and suffix length in all trials,
the percentage of training data was again 0.5.

Tab. 9. Using character model for paradigm prediction

Character scores Character scores
Task No character scores as features as filters
Nouns 77.38 93.50 77.42 93.50 77.36 93.42
Verbs 76.30 88.86 80.37 90.92 77.01 89.35

We observe that language model has no effect for the Nouns task. On the con-
trary, on the verbs task filtering already improves performance significally, while
combining language model scores with initial paradigm probabilities increases pre-
diction quality by 3 percents more. It is easy to explain since the main source of errors
for nouns was the confusion between animate/inanimate nouns where both the pre-
dictions are phonologically plausible. Conversely, in the Verbs task the mispredicted
forms in imperative like *ocywecmascs has low probability according to character n-
gram models which allows the system to exclude them.

The main contribution of our paper is corpora-based algorithm for paradigm pre-
diction. Again, we accommodate corpora counts together with the logarithmic prob-
abilities predicted by the basic classifier on the second stage of our algorithm. More
precisely, after generating the word forms w,,...,w_ of the lexeme L according to hypo-
thetic paradigm c;, we calculate the corpus score by the formula C = Y7, —log C(w;),
where C (wj) is the number of times w; occurs in the corpora. All counts are incremented
by 1 to avoid zero probabilities. This method resembles the method of [Ahlberg et al.,
2014], however, we make one modification to deal with homonymy: if a word form oc-
curs two times in the paradigm (for example, in nominative and genitive), then we di-
vide all the corpora counts of it by 2. Without this modification, this algorithm favours
invariable nouns.
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However, we are still unable to discriminate between inanimate and animate
nouns by our algorithm since the set of word forms is the same in both cases. The
only difference is that genitive forms of animate nouns would be more frequent than
the ones of inanimate since they appear in accusative also. To capture this difference
we should measure the similarity between the expected distribution of case forms
and the observed proportion of their counts. Let P=[p,,...,p, ] be the expected prob-
abilities of different word forms according to their grammemes and N=[N,...,N, ]
be their observed counts. We normalize the empirical distribution by its sum N = 3 Nj,
obtaining the empirical probability distribution Q=1[q,,...,q, 1, where q; = % Then
the difference score equals

D(V,P) = Z q; logﬂ -logN
7 Pj
Note that this measure is simply Kullback-Leibler divergence between Q and P
multiplied by the log count of the given lexeme. The expected form counts were col-
lected in the training phase separately for each paradigm. The results for corpora-
based paradigm prediction are shown in Table 10. We used the counts from Russian
National Corpora available on ruscorpora.ru/corpora-freq.html.

Tab. 10. Using character model for paradigm prediction

Corpora counts Counts and divergences
Task | No corpora as features as features
Nouns 77.38 93.50 80.21 95.34 82.73 95.67
Verbs 76.30 88.83 84.30 93.81 83.66 93.73

We observe that using corpora counts indeed leads to a substantial gain in per-
formance in both tasks. However, in the case of verbs most of the advantage is ob-
tained from corpora counts themselves, using similarity scores slightly worsens per-
formance. On the Nouns task similarity scores, on the contrary, leads to a further
improvement in per-table accuracy. Indeed, the most difficult problem for nouns
is animacy/inanimacy differentiation where absolute counts are useless. In the verb
tasks, conversely, homonymy plays no role, therefore, similarity scores are redundant
and make the data noisier.

Inspecting remaining incorrect predictions, we found that in the Verbs task they
are mainly caused by wrong imperative form generation. Often corpus counts cannot
resolve this problem because imperative forms are not very frequent for many verbs:
both xpogomouu and *kpogomous do not appear in the RNC counts. Often corpora
features are not powerful enough to overcome the gap caused by first level classifier.
For example, for the verb szams the correct paradigm has probability 0.01 after the
first stage. Joint classifier raises it up to 0.3, however, it is too low to rank this hypoth-
esis on the top. The same problem arises in the task of noun paradigm prediction: for
most of the erroneous predictions the correct paradigm was excluded already by the
basic classifier or obtained an extremely low probability.
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We also combined character n-gram scores with the corpora-based classifier,
which improved the performance further. For the Nouns task the gain was marginal
(82.80% instead of 82.73% for per-table accuracy), however, the accuracy of para-
digm prediction for verbs achieved 86.51% instead of 84.30%. The per-form accuracy
also increased significantly, reaching 95.66% in comparison with 93.81%.

8. Conclusion

We have developed a system for automatic paradigm induction and prediction.
Our algorithm of paradigm induction is based on the method of longest common sub-
sequence. To predict paradigms automatically we apply a logistic regression classifier
using suffix and prefix features. This classifier achieves accuracy of 77% on Russian
nouns and 76% on Russian verbs in paradigm prediction task, the percentage of cor-
rectly predicted forms is 93% and 88% respectively. We have also designed a corpora-
based algorithm of paradigm prediction using the basic classifier on its first stage. This
improves the accuracy of paradigm prediction to 82% on nouns and 86% on verbs,
per-form accuracy reaches 95 % for both tasks. These results are substantially better
than previously achieved for Russian in [Ahlberg et al., 2015] (the authors of that
work used another dataset and experiment setting).

We plan to improve our results further by using corpora information more exten-
sively. Our results show that taking into account relative frequencies of grammemes
enhances the quality of corpora-based methods. Therefore modelling the distribution
of grammemes more accurately should leave to further improvement. For this goal
we plan to use morphologically disambiguated corpora. Another improvement could
be achieved by grouping together the corpus statistics for the words of presumably the
same paradigm.

Our results could be used for automatic morphological analysis and synthesis
in such tasks as POS-tagging or lemmatization. Modern techniques of lemmatization
such asused in [Jonjejan, Dalianis, 2009] also use the LCS approach but apply it to each
word form separately without using full inflectional table. Our method incorporates
information from the whole paradigm, therefore it could potentially improve state-of-
the-art algorithms of morphological analysis for Russian. Since our system does not
predict the best inflectional table only, but returns the probabilities of possible para-
digms, it can be used as a component of a joint classifier, taking into account context
model probabilities as well as single word scores. Using context information together
with suffix/prefix features could also help to determine word part-of-speech, which
is a preliminary step for our algorithm.

This task is especially important for Web texts, which contain numerous out-of-
vocabulary words whose inflection cannot be determined by dictionary-based meth-
ods. We plan to test our approach for morphological processing of social media texts
in future studies.



Automatic Detection of Morphological Paradigms Using Corpora Information

References

1.

10.

11.

[Ahlberg et al., 2014] Ahlberg M., Forsberg M., Hulden M. (2014) Semi-supervised
learning of morphological paradigms and lexicons // EACL 2014, p. ~569.
[Ahlberg et al., 2015] Ahlberg M., Forsberg M., Hulden M. (2015) Paradigm classi-
fication in supervised learning of morphology // Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics
Human Language Technologies (NAACL-HLT 2015), Denver, CO, pp. 1024-1029.
[Chen,Goodman, 1996] Chen S. F., Goodman J. (1996) An empirical study
of smoothing techniques for language modeling // Proceedings of the 34th an-
nual meeting on Association for Computational Linguistics, pp. ~310-318.
[Durrett, DeNero, 2013] Durrett G. and DeNero J. (2013) Supervised Learning
of Complete Morphological Paradigms. // HLT-NAACL, pp. 1185-1195.

[Fan et al., 2008] Rong-En Fan R.-E., Chang K.-W., Hsieh C.-J., Wang X.-R., Lin C.-
J. (2008) LIBLINEAR: A Library for Large Linear Classification // Journal of Ma-
chine Learning Research, Vol. ~9, pp. ~1871-1874.

[Jonjejan, Dalianis, 2009] Jongejan B., Dalianis H. (2009) Automatic training
of lemmatization rules that handle morphological changes in pre-, in-and suf-
fixes alike. // Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Pro-
cessing of the AFNLP, Vol. ~1, pp. ~145-153.

[Lyashevskaya,Sharoff, 2009] Lyashevskaya O. and Sharoff S. (2009) Frequency
dictionary of modern Russian language [Chastotnyj slovar> sovremennogo russk-
ogo yazyka], Azbukovnik, Moscow.

[Nicolai et al., 2015] Nicolai G., Cherry C., Kondrak G. (2015) Inflection Gen-
eration as Discriminative String Transduction // Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics
Human Language Technologies (NAACL-HLT 2015), Denver, CO, pp. 923-931.
[Padro, Stanilovsky, 2012] Padro L., Stanilovsky E. (2012) FreeLing 3.0: Towards
Wider Multilinguality // Proceedings of the Language Resources and Evaluation
Conference (LREC 2012), Istanbul, Turkey, pp.~2473-2480.

[Pedregosa et al., 2011] Pedregosa F., Varoquaux G., Gramfort A., Michel V.,
Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas
J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. (2011) Scikit-
learn: Machine Learning in Python. // Journal of Machine Learning Research,
Vol. ~12, pp. ~2825-2830.

[Zaliznyak, 2002] Zaliznyak A.A. (2002) Russian nominal inflection with a sup-
plement of selected works on modern Russian and general linguistics. [Russkoe
imennoe slovoizmenenie s prilozheniem izbrannyh rabot po sovremennomu
russkomu yazyku] Yazyki slavianskoj kul-tury, 2002.



Sorokin A. A., Khomchenkova I. A.

Appendix

Tab. 11. Most frequent abstract paradigms for Russian nouns

N¢ | Abstract paradigm Count | Example

1 | 1#1+m#1+a#1+oB#1+y#1+am 959 | 0=abopT,
#1#1+b1#1+oMm#1+amu#1+e#1+ax 1=abopT

2 1+e#1+a#l+a#l+u#l+o#1+am 622 | 0=EBaHrenue,
#1+e#1+a#l+em#l+amu#l+u#1+ax 1=EBaHrenu

3 1+a#1+p1#1+p1#1#1+e#1+am 444 | 0=aBTOMAaIINHA,
#1+y#1+b1#1+ol#1+amu#1+e#1+ax 1=aBTOMaINH

4 | 1+p#1+u#l+u#l+eu#1+u#l+am 330 | 0=aKTUBHOCTb,
#1+b#1+u#1+p1o# 1+ aMu#1+u#1+ax 1=aKTUBHOCT

5 | 1+a#l+u#l+u#l+i#1+u#l+am 270 | O=aBapus,
#1+10#1+u#1+el#l+amu#1+u#l+ax 1=aBapu

6 | 1#1+b#1+a#1+o0B#1+y#1+am 249 | 0=aboHeHT,
#1+a#1+oB#1+om#1+amu#1+e#1+ax 1=aboHeHT

7 | 1+2+a#l+2+u#l+2+u#l1+o+2#1+2+e 239 | O=apxka,
#1+2+am#1+2+y#1+2+u#1+2+oh#1+2+amu 1=ap, 2=k
#1+2+e#1+2+ax

8 | 1#1+u#l+a#1+oB#1+y#1l+am 222 | O=aHar’or,
#1#1+u#1+om#1+amu#1+e#1+ax 1=anaJor

9 1#1+u#1+a#1+oB#1+y#1+am 174 | 0=akajeMUK,
#1+a#1+oB#1+om#1+amu#l+e#1+ax l=akazeMUK

10 | 1+o#l+a#l+a#l#1+y#1l+am 143 | O=areHTCTBO,
#1+o#1+a#1+om#1+amu#1+e#1+ax l=areHTCTB

Tab. 12. Most frequent abstract paradigms for Russian verbs

Ne¢ | Abstract paradigm Count | Example

1 1+Te#14+10#1+emp#1+eTt#1+em#1+ere#1+10T | 1,316 | O=apecTOBHIBATE,
#1+n#1+na#l+no#1+nu#1+h#1+iTe 1=apecTOBBIBA

2 | 1+Teca#l+ioch#1+embeaz#l+erca##l+emesa 568 | 0=6apaxTaThCH,
#1+eTecb#1+10TCA#1+ncA#1+nace#1+m0Ch 1=6apaxTa
#14+muce#14+-tica#14+-1iTech

3 | 1+oBaTh#1+y0#1+yenp#1+yet#1+yem 302 | O=arurtuposars,
#1+yeTe#1+ytoT#1+oBan#1+oBana#1+oBaio l1=arutup
#1+oBanu#l+yit#l+yiite

4 1+ute#1+w0#1+ump#1+ut#1+um#1+ure 192 | 0=6saroZapuTh,
#1+ar#l+un#l+una#l+uno#1+unu#l+un 1=6marogap
#1+uTte

5 | 1+ure#1+y#1+ump#1+ut#1l+um#1+ure#1+ar 117 | O=BepwmHUTH,

#l+un#l+una#l+uno#1+unu#l+u#l+ure

1=Bepi
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Ne | Abstract paradigm Count | Example

6 | 1+urp#l+no#1+ump#1+ur#1+um#1+uTe 116 | 0=61arOCTIOBUTH,
#1+ar#1+un#l+una#l+uno#l+unn#1+u 1=61arocioB
#1+ute

7 | 1+urbca#l+ocp#1+umbca#l+urca#1+umcsa 104 | O=BasuThCA,
#14+urechv#1+arca#1+unca#1+unacb#1+unoch 1=Ban
#14+unuce#1+ucp#1+urtech

8 | l+aute#1+xy#1+aump#1+aut#1+aum 89 | 0=6pozuTs,
#1+mure#1+aa1#1+aun#1+nuna#1+nuno 1=6po
#1+munu#l+au#l+aure

9 | 1+oBaTbca#1+yroce#1+yembea#l+yerca 71 | O=aganTtupo-
#1+yemca#l+yerece#1+yroTca#l+osanca BaTbCA,
#1+oBanacp#1+o0Banochb#1+oBanuch l=amanTup
#1+ylica#1+yiTech

10 | 1+yTe#1+y#1+Emb#1+ET#1+EM#L1+ETe#1+yT 66 | 0=6yecHYTH,

#1+yn#l+yna#l+yno#1+ynu#l+u#l+ure

1=6necH




	Automatic Detection of Morphological Paradigms Using Corpora Information
	Introduction
	Abstract paradigms
	Longest common subsequence
	Automatic detection of paradigms
	Evaluation of paradigm classifier
	Analysis of results 
	Analysis of results
	Corpus-based methods of paradigm predictions
	Conclusion
	References
	Appendix


