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The paper presents evaluation of three neural network based approaches 
to Twitter sentiment analysis task performed at SentiRuEval-2016. The task 
focuses on sentiment classification of tweets about banks and telecommu-
nication companies.�   
	 Our team submitted three solutions which are based on different super-
vised classifiers: Gated Recurrent Unit neural network (GRU), convolutional 
neural network (CNN), and SVM classifier with domain adaptation combined 
with previous two classifiers. We used vector representations of words ob-
tained with word2vec model as features for classifiers. These classifiers 
were trained on labeled data provided by organizers of the evaluation. Ad-
ditionally, we collected several million posts and comments from social net-
works for training word2vec model.�  
	 According to evaluation results, GRU-based solution shows the best 
macro-averaged F1-score for both domains (banks and telecommunication 
companies) and also has the best micro-averaged F1-score for banks do-
main among all solutions submitted to SentiRuEval.
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Introduction

The paper describes participation in SentiRuEval-2016 competition. The task of the 
competition focuses on object-oriented sentiment analysis of Russian messages posted 
by Twitter users. The messages are about banks and telecommunication companies.

The goal of the task is detection of sentiment (negative, neutral or positive) 
with respect to organizations (banks or telecommunication companies) mentioned 
in Twitter message. Thus it can be viewed as three-class classification task. The or-
ganizers of the evaluation provided labeled training datasets along with unlabeled 
test datasets for both banks and telecommunication companies. Training datasets 
contain about 9,000 Twitter messages each, while test datasets contain about 19,000 
messages each.

In this paper, we focus on detection of overall sentiment of messages. Object-
oriented sentiment classification with algorithms used in this paper is a part of our 
further research.

All variants of our sentiment analysis system use supervised machine learning 
algorithms. One of our main goals is evaluation of artificial neural networks (ANNs) 
for sentiment analysis task. In this paper, we evaluate algorithms based on recurrent 
neural network (RNN) and convolutional neural network (CNN) along with shallow 
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machine learning approach—SVM with domain adaptation. In each of these three 
cases we use word2vec (Mikolov et al., 2013a) vectors as features for the algorithms.

We have submitted three solutions to SentiRuEval-2016. The first two are based 
on recurrent neural network and convolutional neural network, respectively. The last 
solution is an ensemble solution consisting of three classifiers. It uses SVM with do-
main adaptation along with RNN and CNN.

The paper is organized as follows: Section 1 provides overview of the related 
work; Section 2 presents full description of our methods and features that we used; Sec-
tion 3 provides evaluation results for different methods; in the final section we make 
conclusion for this work.

1.	 Related work

Artificial neural networks have become very popular in recent years. They have 
been shown to achieve state-of-the-art results in various NLP tasks, outperforming 
shallow machine learning algorithms like support vector machines (SVMs), hidden 
Markov models and conditional random fields (CRFs).

Recurrent neural networks (RNNs) are considered to be one of the most power-
ful models for sequence modeling. The success of RNNs in the area of sentence classi-
fication was reported by many researchers (Irsoy & Cardie, 2014) (Adamson & Turan, 
2015) (Tang et al., 2015).

Convolutional neural networks (CNNs) are another class of neural networks ini-
tially designed for image processing. However, CNNs have been shown in recent years 
to perform very well in NLP tasks, including sentiment analysis and sentence model-
ing tasks (Kalchbrenner et al., 2014) (Kim, 2014) (dos Santos et al., 2014).

It has been shown that neural network based models for NLP become especially 
powerful when they are pre-trained with some vector space model (Collobert et al., 
2011). The most common way to do this is to use distributed representations of words. 
The most popular such model now is word2vec (Mikolov et al., 2013a), which im-
proves many NLP tasks.

2.	 Method description

2.1.	Word2vec

Word2vec (Mikolov et al., 2013a) (Mikolov et al., 2013b) is a popular model for 
computationally efficient learning vector representations of words. Vectors learned 
using word2vec have been shown to capture semantic information between words 
(Mikolov et al., 2013c), and pre-training using word2vec leads to major improvements 
in many NLP tasks.
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We used original word2vec toolkit1 for obtaining vector representations of Rus-
sian words. The model was trained on 3.3 GB of user-submitted posts from VK, Live-
Journal, echo.msk.ru and svpressa.ru. All the text was lowercased, and punctuation 
was removed. The following parameters were used for learning:

1.	� Continuous Bag-of-Words (CBOW) architecture with negative sampling 
(10 negative samples for every prediction);

2.	 vector size of 200;
3.	 maximum context window size of 5;
4.	 5 training iterations over corpus;
5.	� words occurring in the corpus less than 25 times were discarded from the 

vocabulary; the resulting vocabulary size was 249,014.

2.2.	Recurrent neural network

Recurrent neural networks (RNNs) are a class of neural networks that have re-
current connections between units. This makes RNNs well-suited to classify and pre-
dict sequence data, inсluding short documents.

Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) is a popu-
lar RNN architecture designed to cope with long-term dependency problem. LSTM 
has been shown to achieve state-of-the-art or comparable to state-of-the-art results 
in many text sequence processing tasks (Sutskever et al., 2014) (Palangi et al., 2015).

Gated Recurrent Unit (GRU) (Cho et al., 2014) is a simplified version of LSTM 
that has been shown to outperform LSTM in some tasks (Chung et al., 2014), although 
according to (Jozefowicz et al., 2015) the gap between LSTM and GRU can often 
be closed by changing initialization of LSTM cells.

Our RNN-based model is composed of LSTM/GRU network regularized by drop-
out with probability of 0.5 and succeeded by fully connected layer with 3 neurons 
that predict probabilities of each class—negative, neutral and positive. The input 
sample is lowercased and converted to sequence of corresponding word2vec vectors 
described in section 2.1. Punctuation and words that are not in word2vec vocabulary 
are discarded. The resulting sequence of vectors is input to the network. Like word-
2vec vectors, the size of input and output of LSTM/GRU cells is 200.

We tried several variations of recurrent networks: shallow LSTM/GRU, bidi-
rectional GRU and two-layer GRU. We also tried to revert the order of input vector 
sequences.

We used Keras library2 to implement the model3. In case of LSTM initialization 
of cells recommended in (Jozefowicz et al., 2015) was used. Sigmoid and hard sig-
moid were used for recurrent network as output activation and hidden activation, re-
spectively; softmax was used as activation of fully connected layer.

1	 https://code.google.com/archive/p/word2vec/

2	 https://github.com/fchollet/keras

3	 Source code is available on https://github.com/arkhipenko-ispras/SentiRuEval-2016-RNN
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Adam optimizer (Kingma & Ba, 2014) and batch size of 8 were used for training; 
the number of training epochs was set to 20.

2.3.	Convolutional neural network

Due to widely reported success of CNNs (convolutional neural networks) (Kal-
chbrenner et al., 2014) (Kim, 2014) (dos Santos et al., 2014) in the area of sentiment 
analysis we have conducted some experiments with CNN as well.

We used word2vec word vectors described in section 2.1 as features. For each 
tweet the matrix S is constructed where si (i-th row) is a word vector for the i-th word 
in tweet. Then we calculate two vectors tavg and tmax as follows:
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Concatenation of these two vectors is input to our CNN. The network is com-
posed of convolutional layer with 8 kernels of width 10 which is succeeded by dense 
layer with 3 neurons (with softmax activation) that predict probabilities of each class. 
scikit-neuralnetwork library4 was used for implementing the network. The number 
of training epochs was set to 10.

The roadmap for further survey includes experiments not only with different 
kinds of features but also with architecture of the CNN as well. Feature extraction 
with word2vec seems to be the most promising one. Since CNNs are not as power-
ful in sequence processing as RNNs the technique of Dynamic k-Max Pooling (Kal-
chbrenner et al., 2014) can be used to address the problem of variable sentence 
length.

2.4.	Domain adaptation and ensemble solution

2.4.1.	 Domain adaptation
In most cases we assume that source domain (train data) and target domain (test 

data) are driven from the same probability distribution:
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Consequently this means that it is impossible to build classifier that would be able 
to distinguish target domain sample from source domain sample. But in many real 
world problems assumption (3) does not hold and

4	 https://github.com/aigamedev/scikit-neuralnetwork
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𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

(4)

How one can detect that 

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

?
1.	� Quality of the model, measured on source domain (e.g. with cross-validation) 

is much higher than on the target domain. Some participants of SentiRuEval-2015 
faced this problem.

2.	� Consequence of assumption (3) is impossibility to build classifier which can 
distinguish target domain from source domain. The ability to build such clas-
sifier indicates that assumption (3) does not hold. We were able to achieve 
F1-score on source vs target domain classification above 0.85.

One can improve quality of algorithm in target domain with different method 
of domain adaptation. Some methods can be found in (Jiang, 2008).

In this work we use a simple method of domain adaptation—sample reweighting. 
Let 

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

 be a loss function. In order to obtain 

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

 we want to minimize following 
function:

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

(5)

We can write function L in the equivalent form:

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

(6)

Now replace true loss function with empirical estimation:

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

(7)

As one can see that algorithm leads as to the feature reweighting with 

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

. Finally we assume that 

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

, thus weight wi can be found 

as 

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 

. With Bayes’ theorem one can estimate weight as:

𝑡𝑡𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 =

1
𝑚𝑚

� 𝑠𝑠𝑖𝑖𝑖𝑖
1≤𝑖𝑖≤𝑚𝑚

 

𝑡𝑡𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚
1≤𝑖𝑖≤𝑚𝑚

𝑠𝑠𝑖𝑖𝑖𝑖 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≡ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑃𝑃𝑠𝑠(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡(𝑋𝑋, 𝑦𝑦) 

𝑙𝑙(𝑥𝑥,𝑦𝑦,𝜃𝜃)

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦, 𝜃𝜃)𝑃𝑃𝑡𝑡(𝑥𝑥,𝑦𝑦) → 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) = � (𝑥𝑥,𝑦𝑦,𝜃𝜃)
𝑃𝑃𝑡𝑡(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑠𝑠(𝑥𝑥,𝑦𝑦) 𝑃𝑃𝑠𝑠

(𝑥𝑥, 𝑦𝑦)
𝑥𝑥,𝑦𝑦∈𝑋𝑋×𝑌𝑌

 

𝐿𝐿(𝜃𝜃) =
1
𝑙𝑙
�(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑙𝑙

𝑖𝑖=1

 

𝑤𝑤𝑖𝑖 = 𝑃𝑃𝑡𝑡(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑃𝑃𝑠𝑠(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)

𝑃𝑃𝑡𝑡(𝑦𝑦|𝑥𝑥) ≡ 𝑃𝑃𝑠𝑠(𝑦𝑦|𝑥𝑥)

𝑤𝑤𝑖𝑖 = 𝑃𝑃(𝑥𝑥𝑖𝑖|𝑡𝑡)
𝑃𝑃(𝑥𝑥𝑖𝑖|𝑠𝑠)

𝑤𝑤𝑖𝑖 =
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑠𝑠)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)𝑃𝑃(𝑡𝑡)

= 𝐶𝐶 ×
𝑃𝑃(𝑡𝑡|𝑥𝑥𝑖𝑖)
𝑃𝑃(𝑠𝑠|𝑥𝑥𝑖𝑖)

 (8)

We estimate weight with the logistic regression, and it slightly increases the 
quality.
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2.4.2.	 Our ensemble solution
Our ensemble classifier consists of three classifiers; each of them votes with 

equal weight. The first two are GRU neural network and convolutional neural network 
described in sections 2.2 and 2.3, respectively.

The third classifier is SVM with sample reweighting described in 2.4.1. We used 
polynomial kernel with degree of 3. For every tweet, the average of word2vec vectors (de-
scribed in section 2.1) of all words in the tweet is used as features for the SVM classifier.

3.	 Evaluation

Tables 1–2 present results of the evalution on sentiment classification. Both ta-
bles show macro-averaged F1-score of negative and positive classes, used as quality 
measure on SentiRuEval-2016 competition.

For recurrent neural network based model, we performed 5-fold cross-valida-
tion on training data provided by organizers of SentiRuEval. The results are showed 
in Table 1. We found that GRU network slightly outperforms LSTM network, and that 
reversing the order of words in tweets improves the quality. Adding an extra recurrent 
layer also slightly increases the quality.

In addition, we found that using word2vec vectors as features for recurrent net-
work is crucial. Using randomly initialized embedding layer and one-hot features in-
stead of word2vec features gives macro-averaged F1-score of only 0.45 for banks and 
0.47 for telecommunication companies.

Table 2 shows results on SentiRuEval test datasets for solutions described in sec-
tions 2.2–2.4. It also shows micro-averaged version of F1-score and includes solutions’ 
ranks among all 58 solutions submitted to SentiRuEval by 10 teams. For test data clas-
sification with GRU network, the model was trained on whole train data 5 times and 
correspondingly gave 5 predictions for test data. Then the leading class over all pre-
dictions was chosen for each sample. Other models were trained and predicted once.

The Gated Recurrent Unit based solution got the best macro-averaged score 
on both domains, significantly outperforming solutions from other teams on banks 
domain, and also has the best micro-averaged F1-score on banks domain.

Table 1. Macro-averaged F1-score, evaluated with RNN models 
using 5-fold cross-validation on SentiRuEval training data

RNN Architecture

Domain

Banks
Telecommunication 
companies

LSTM 0.6026 0.6410
GRU 0.6129 0.6428
GRU, reversed sequences 0.6211 0.6570
Bidirectional GRU 0.6207 0.6521
Two-layer GRU, reversed sequences 0.6243 0.6597
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Table 2. F1-score and ranks among all solutions, evaluated on 
SentiRuEval test data (according to SentiRuEval results)

Classifier

Domain

Banks
Telecommunication 
companies

Macro  
(score/rank)

Micro  
(score/rank)

Macro  
(score/rank)

Micro  
(score/rank)

CNN 0.4832 / 21 0.5253 / 21 0.4704 / 41 0.6060 / 36
Two-layer GRU, 
reversed sequences

0.5517 / 1 0.5881 / 1 0.5594 / 1 0.6569 / 21

Ensemble classifier 0.5352 / 2 0.5749 / 2 0.5403 / 9 0.6525 / 23
Best solution not 
from our team

0.5252 / 3 0.5653 / 3 0.5493 / 2 0.6822 / 1

Conclusion

We have described all variants of our sentiment analysis system. The GRU net-
work based solution performed well and won the SentiRuEval-2016 competition 
on both domains (banks and telecommunication companies).

Using word2vec vectors as features has made a major contribution to the result. 
However, we believe that parameters of our classifiers were not optimal, even for 
GRU network. After publication of labeled test data by organizers of the competition, 
we were able to achieve macro-averaged F1-score above 0.6 on test data for both do-
mains using GRU network. One of the parts of our future work is to find optimal ar-
chitectures and learning parameters for RNN and CNN. It is also possible to combine 
RNN and CNN into one compound network.

In addition, our future research includes adapting our neural network based ap-
proaches to object-oriented sentiment analysis, as well as developing methods of do-
main adaptation within these approaches.
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