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Конечные автоматы успешно используются в различных областях вычислительной лингвистики. Основной 
причиной их успешного использования является возможность построения минимальных 
детерминированных автоматов. Однако препядствием к их использованию является размер 
детерминированных автоматов, который может быть экспоненциально больше чем размер соответствующих 
лингвистических правил и не помещаться в память современных компьютеров. 

В данной работе мы предлагаем новый алгоритм для сопоставления текста с большим набором правил 
представленных в виде конечного автомата. Алгоритм основан на вычисление пересечения для автомата 
подстрок входного текста и экспоненциально меньшего, по сравнению с традиционным подходом, автомата 
лингвистических правил. Основным преимуществом нашего подхода является использование 
экспоненциально меньших автоматов для представления лингвистических правил. Результаты сравнения 
двух подходов, основанные на правилах снятия лексико-грамматической неоднозначности, показали что 
скорость поиска образцов в тексте выше при использование нашего метода чем при использовании 
традиционного метода, когда правила делятся на группы. 

Introduction 
Multiple pattern matching problem consists of finding the occurrences of a set of patterns P={p1,...,pm} in text. The 
patterns themselves are usually defined as strings or regular expressions. The first efficient multiple string pattern 
matching algorithm was suggested by A. Aho and M. Corasick [3]. This algorithms looks for all patterns 
simultaneously and has O(N) complexity. Here and below N denotes the length of input text. Another even earlier 
approach for multiple string pattern matching is based on suffix trees. The main advantage of suffix trees is the 
ability to find the occurrences of the string in text in linear time with respect to the length of string. A suffix tree can 
be constructed in linear time O(N) with respect to the length of text [4,5,6]. Hence, each string pattern p∈P can be 
found with O( | |p )  time, where | |p  - is the length of the pattern. 

Further generalizations in pattern matching algorithms led to the multiple pattern matching with patterns represented 
as regular expressions P={re1,...,rem} . 

Before making the definition of the regular expression pattern matching problem, lets make common denotations. T 
denotes an input text, a sequence of symbols over finite alphabet. T[1, i] denotes the prefix of the text T of length i . 
T[i, j] ,i≤ j denotes a sub-string of the length j - i. Σ denotes the finite alphabet of the input text, a set of all possible 
input symbols. LΣ is the language of all arbitrary strings from Σ. LFact(T) is the language of all possible sub-strings of 
the input text. LP is the union of languages of all regular expression patterns LP≡Lre1|⋅⋅⋅|Lrem . The language of 
concatenation of LΣ and LP is denoted by LΣ⋅LP . The finite state automaton [2] corresponding to the language L is 
denoted by M(L) . 

The definition 1 defines the problem of regular expression pattern matching. 
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Definition 1 The problem of regular expression pattern matching is to find a set of occurrences I , such that 
, T[1, i]∈ LIi ∈∀ Σ⋅LP , i  . N...1=

The standard solution of regular expression patterns matching problem is to construct Rabin-Scott automaton [2] for 
each pattern and add extra initial state with the alphabet Σ loop and draw epsilon transitions from the added state to 
all the initial states of all patterns. And then finally construct minimal deterministic automaton M(LΣ⋅LP). Using this 
automaton it is possible to solve the problem of matching regular expression patterns as it was stated above with 
O(N) complexity. However, the resulting automaton may take O(2M) space, where M is the sum length of all regular 
expressions. 

In practice it is not always necessary to find all occurrences of patterns but to find out whether there is at least one of 
them or to find the left-most longest match in the input text. Since these tasks seem to be less complex the 
automaton can still have O(2M) states. 

In case when the number of patterns is large, for example these patterns represent linguistic rules for part of speech 
tagging or shallow parsing, it may not be possible to construct the minimal deterministic automaton by the scheme 
described above due to the huge number of states and transitions in the resulting automaton. 

Several methods have been suggested to overcome this problem. The simplest one is splitting rules into parts and 
constructing minimal automaton for each part separately. The method suggested in [7] computes failure function 
similar to the one presented in Aho-Corasick algorithm [3]. But this algorithm seems work well for automatons with 
acyclic transition graphs only, and it produces too many additional states in case when automaton graph for P is 
cyclic. Another method suggested in [9] solves the problem stated above in sub-linear time, but requires O(N×logN) 
preprocessing time and space, which makes it less attractive for static patterns and huge amount of text, as in the 
case of computational linguistics. 

In this article we propose a regular expression matching algorithm which combines usage of M(LP) automaton 
instead of M(LΣ⋅LP) with factor automaton [8] constructed from the input text. We suggest two variants of the 
algorithm, the first modification uses non-deterministic factor automaton, the second uses minimal deterministic 
factor automaton. Both deterministic and non-deterministic factor automata can be efficiently constructed in O(N) 
time and space. Thus, using our algorithms it is possible to solve the regular expression pattern-matching problem in 
almost linear time with significant benefits in memory usage. 

The paper is organized as follows: section 1 describes algorithm and gives proof of its correctness, section 2 makes 
comparison of the described algorithm with the straight-forward implementation when rules are split into groups. 

1. Algorithm description 
Let us first remind the definition of factor automaton and outline some of its properties. 

Definition 2 The factor automaton M(LFact(T)) of the string T is an automaton accepting the language LFact(T), such 
that " ∀ b∈ LFact(T) , (i,j), i≤ j, b = T[i, j]. ∃
The following properties of factor automata are important for our algorithm: 

1. Each state of a non-deterministic factor automaton corresponds to the exactly one position in the input string T, 
see Figure 1. 

2. Minimal deterministic factor automaton can be constructed in O(N) time and space [8]. Non-deterministic factor 
automaton can be constructed in O(1) time. 

 

Figure 1: Non-deterministic factor automaton for the input text T=”abac”. Note: 0-state is initial; all automaton 
states are final. 
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The main idea of the algorithm is to calculate the intersection of the patterns automaton M(LP) and the factor 
automaton M(LFact(T)) finding a set of occurrences from the set of final states of the resulting intersection automaton. 
This can be described by the following equation: 
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Where (Q, i, F, Σ, δ) is the resulting intersection automaton; Q is a set of states, i is an initial state, F is a set of final 
states; Left[Q] returns a set of states from M(LFact(T)), the left part of Cartesian product. IO is a set of occurrences, the 
ending positions of the matched patterns. 

Theorem 1 The set of occurrences IO obtained by Equation 1 is a solution of the regular expression pattern 
matching problem of the Definition .  

Proof. 

Suppose, k∉ I∃ O, s.t. T[1, k]∈ LΣ⋅LP ⇒$ a∈L∃ Σ and ∃ b∈LP, s.t. T[1, k] ≡ a⋅b, and b∉LFact(T), this contradicts the 
definition of M(LFact(T)). 

Suppose, ∃ $f1∈IO, s.t. T[1, f1]∉LΣ⋅LP ⇒ $ (f∃ 1,f2)∈F, where f1∈F1, f2∈F2, ⇒  ∃ b∈LFact(T) which is not a sub-string of 
T, this contradicts the definition of M(LFact(T)). 

□ 

The complexity of the algorithm can be calculated as a sum of the complexities of: 

1. M(P) construction from a set of regular expressions P.  

2. M(LFact(T)) construction from text T.  

3. Intersection calculation.  

For big static rule bases, which are usually the case of computational linguistic, the corresponding automaton 
construction requires to be done only once, so the first stage does not require any operations during the text 
processing stage. 

The complexity of the factor automaton construction is O(N) for a minimal deterministic automaton [8] and O(1) for 
non-deterministic automaton. Indeed, in case of non-deterministic factor automaton, the text T does not require any 
preprocessing at all. The text itself can serve as implicit representation of the δ of M(LFact(T)). 

The complexity of intersection of factor automaton with automaton constructed from patterns is O(N2) in general 
(note that factor automaton of the input string has number of states proportional to the input string length). However 
taking into account that M(LFact(T)) is acyclic and the fact that we do not require to calculate the entire intersection 
automaton but only a set of its final states the time complexity of this stage can be drastically reduced. 

During the intersection calculation, we associate with each state q∈M(LFact(T)) a set of states from M(LP) reachable by 
all possible paths from the M(LFact(T)) coming into the q. These sets then can be iteratively calculated traversing the 
factor automaton in the topological order. The initial association is a pair of (i1,{i2}) with only one state in associated 
set. 

These considerations lead us to the following pattern matching algorithm based on non-deterministic factor 
automaton, see Algorithm 1. The analogous algorithm based on minimal deterministic factor automaton is not listed 
here. 
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The first loop of the algorithm processes transitions of the initial state of the implicitly specified factor automaton 
M(LFact(T)). The second loop processes all the other states except the last one as it does not have any transitions, see 
Figure 1. These loops are separated here for the reason of clarity. It is possible to merge these loops making the 
algorithm online over the input text. Also there is no need to remember all sets during the processing, in online 
version only current and the following set should be kept. So the time complexity of Algorithm 1 is 

)(
max

NSO and space complexity is O(N), where max
S  is the maximum set size, which is limited by N. 

2. Practical results 
We made the comparison of the proposed algorithm with the traditional approach when rules had to be split into 
groups and for each group a separate automaton was constructed in order to fit the memory. 

For our experiments, we used rules for part-of-speech tagging in WRE notation [1]. Constructing M(LΣ⋅LP) 
automaton, it was necessary to split the rules into 5 groups. While we were able to construct M(LP) without any 
splitting. 

The execution process consisted of the following stages: first we read the input sentence, then assigned a digital 
value to each word of the sentence and then matched the sequence of digits with the automaton/automata 
constructed from the rules. We made our tests on 7.8 Mb of input plain-text corpus. The cumulative times of 
execution at each stage are summarized in Table 1. Note: the first two algorithms require no preprocessing time; the 
third one requires constructing minimal deterministic factor automaton and re-enumerating its states in topological 
order. 

Table 1: Comparison of algorithms : the first algorithm is based on rules-splitting, the second one uses non-
deterministic factor automaton, the third one uses minimal deterministic factor automaton. The numbers are 
cumulative time given in seconds for processing 7.8 Mb of the input text. 

Alg   Input/Output, sec   Digitizing, sec   Preprocessing, sec  Matching, sec  
1.   25.78   30.00   30.00   31.41  
2.   25.78   30.00   30.00   31.02  
3.   25.78   30.00   31.67   32.57  

The speed of text matching with M(LΣ⋅LP) split into 5 parts is 5.53 Mb/sec. While the speed of matching by 
intersection of automaton of rules M(P) with the factor non-deterministic automaton is 7.64 Mb/sec. 

As it was shown in the previous section, the maximum possible size of the set associated with q∈M(LFact(T)) is N. 
However, for the practical rule bases the average set size is much smaller than N and can be considered as a 
constant. For example for our part-of-speech tagging rules we used the average set size was about 3 which is much 
smaller in comparison to the size of the input text. 
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3. Conclusions 
In this paper we presented a new approach for matching text over large rule bases represented as finite state 
machines. The main advantage of the algorithm is the possibility of usage of exponentially smaller automata for 
representation of rules. The results of comparison showed that matching speed can be higher using our approach 
instead of traditional, when rules are split into groups. 

While the matching algorithm based on intersection of minimal deterministic factor automaton of the input text with 
automaton of rules showed poorer running time than algorithm based on intersection with non-deterministic factor 
automaton, we believe it can be improved by more accurate implementation of the factor automaton construction. 
Moreover, this algorithm can be significantly faster when there are many similar sub-strings in the large input text. 
This can be the case of DNA sequences where the input alphabet size is small [10]. 
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