Joxnaowr mescoynapoonoii kongpepenyuu Juanoe 2004

AJIFOpI/ITM MOMCKA IIA0JJOHOB B TEKCTE JISA 00JILIIOT 0
KOJIHYECTBA MPaBUJI NIPEACTABJICHHBIX B BUI€ KOHCYHbBIX
aBTOMaTOB
Ononunues Cepreit AnekcanapoBUY

komranusi Pamoiep
olonichev@rambler-co.ru

KoneuHsle aBTOMaThl YCHENIHO MCITIONB3YIOTCS B PA3JIMUHBIX 00JACTSIX BBIYMCIUTEIBHON JIMHIBUCTHKH. OCHOBHOM
OPUYMHOM HMX YCHEHNIHOTO HUCIONb30BaHUS SIBISIETCS BO3MOXKHOCTh IOCTPOEHUS MUHUMAIbHBIX
JETepMHUHUPOBAHHBIX ~ aBTOMaToB. (OJHAKO TMpPEISIACTBHEM K WX HCIOJNB30BAHMIO SIBISETCA pa3Mep
JETePMUHNPOBAHHBIX aBTOMATOB, KOTOPBIH MOXKET OBITh SKCIIOHEHIIMAIEHO OO0JIBIIIE YEM Pa3Mep COOTBETCTBYIOIINX
JIMHTBUCTHYECKUX TIPABHI U HE TIOMEIIATHCS B TAMSTh COBPEMEHHBIX KOMIIBIOTEPOB.

B nmannO# paboTe MBI mpeisiaraéM HOBBIM alrOPUTM JUIS COIIOCTABIICHHS TEKCTa C OOJBIINM HAOOpOM IIpaBHII
MIPEJCTAaBICHHBIX B BHJIEC KOHEYHOTO aBTOMAaTra. AJTOPUTM OCHOBAaH Ha BBIYHCIICHHE IEPECEUCHHUS ISl aBTOMAaTa
MOJICTPOK BXOJHOTO TEKCTa M 3KCIIOHEHIIHATFHO MEHBIIIET0, TI0 CPAaBHEHHIO C TPAIUIIOHHBIM MOIXO0I0M, aBTOMaTa
JUHTBUCTUYECKUX TpaBwi. OCHOBHBIM MPEUMYLIECTBOM HAIETO IMOAXO0Ja SBISETCS HCIOJb30BaHUE
9KCIIOHEHITMAIbHO MEHBIIMX aBTOMATOB JUIsSl MPEACTABIICHUS! JTUHTBUCTUYECKUX MpaBuil. Pe3ynbraTel cpaBHEHUS
JIByX TOAXO0JOB, OCHOBAaHHBIE HA MpaBUJIaX CHATHUS JIEKCUKO-TPAMMATHUYECKON HEOJHO3HAYHOCTH, MOKa3ajlu YTO
CKOpPOCTh TOHWCKa O0Opa3lloB B TEKCTE BHINIC IMPH WCIOJNB30BAaHHE HANIET0 METOAA YeM IPH HUCIOIb30BaHUM
TPaTUIIMOHHOTO METO/Ia, KOT/[a TPABHJIA JICJISATCS Ha TPYIIIIHL

Introduction

Multiple pattern matching problem consists of finding the occurrences of a set of patterns P={p,,...,p,.} in text. The
patterns themselves are usually defined as strings or regular expressions. The first efficient multiple string pattern
matching algorithm was suggested by A. Aho and M. Corasick [3]. This algorithms looks for all patterns
simultaneously and has O(N) complexity. Here and below N denotes the length of input text. Another even earlier
approach for multiple string pattern matching is based on suffix trees. The main advantage of suffix trees is the
ability to find the occurrences of the string in text in linear time with respect to the length of string. A suffix tree can
be constructed in linear time O(N) with respect to the length of text [4,5,6]. Hence, each string pattern peP can be
found with O(|p|) time, where |p| - is the length of the pattern.

Further generalizations in pattern matching algorithms led to the multiple pattern matching with patterns represented
as regular expressions P={re,,...,re,,

Before making the definition of the regular expression pattern matching problem, lets make common denotations. 7
denotes an input text, a sequence of symbols over finite alphabet. 7//, i] denotes the prefix of the text 7 of length i .
T[i, j] ,i<j denotes a sub-string of the length j - i. ¥ denotes the finite alphabet of the input text, a set of all possible
input symbols. L; is the language of all arbitrary strings from Z. L., is the language of all possible sub-strings of
the input text. L, is the union of languages of all regular expression patterns L,=L,.|-|L... The language of
concatenation of Ly and L, is denoted by L;-L, . The finite state automaton [2] corresponding to the language L is
denoted by M(L) .

The definition 1 defines the problem of regular expression pattern matching.

474

mailto:olonichev@rambler-co.ru

Hoknaowvl mescoynapoonoii konghepernyuu /luanoe 2004

Definition 1 The problem of regular expression pattern matching is to find a set of occurrences I, such that
Viel 1/1,ileLsL,, i=1..N

The standard solution of regular expression patterns matching problem is to construct Rabin-Scott automaton [2] for
each pattern and add extra initial state with the alphabet ¥ loop and draw epsilon transitions from the added state to
all the initial states of all patterns. And then finally construct minimal deterministic automaton M(Ls-L;). Using this
automaton it is possible to solve the problem of matching regular expression patterns as it was stated above with
O(N) complexity. However, the resulting automaton may take O(2") space, where M is the sum length of all regular
expressions.

In practice it is not always necessary to find all occurrences of patterns but to find out whether there is at least one of
them or to find the left-most longest match in the input text. Since these tasks seem to be less complex the
automaton can still have O(2") states.

In case when the number of patterns is large, for example these patterns represent linguistic rules for part of speech
tagging or shallow parsing, it may not be possible to construct the minimal deterministic automaton by the scheme
described above due to the huge number of states and transitions in the resulting automaton.

Several methods have been suggested to overcome this problem. The simplest one is splitting rules into parts and
constructing minimal automaton for each part separately. The method suggested in [7] computes failure function
similar to the one presented in Aho-Corasick algorithm [3]. But this algorithm seems work well for automatons with
acyclic transition graphs only, and it produces too many additional states in case when automaton graph for P is
cyclic. Another method suggested in [9] solves the problem stated above in sub-linear time, but requires O(NxlogN)
preprocessing time and space, which makes it less attractive for static patterns and huge amount of text, as in the
case of computational linguistics.

In this article we propose a regular expression matching algorithm which combines usage of M(L,) automaton
instead of M(Ls-L,) with factor automaton [8] constructed from the input text. We suggest two variants of the
algorithm, the first modification uses non-deterministic factor automaton, the second uses minimal deterministic
factor automaton. Both deterministic and non-deterministic factor automata can be efficiently constructed in O(N)
time and space. Thus, using our algorithms it is possible to solve the regular expression pattern-matching problem in
almost linear time with significant benefits in memory usage.

The paper is organized as follows: section 1 describes algorithm and gives proof of its correctness, section 2 makes
comparison of the described algorithm with the straight-forward implementation when rules are split into groups.

1. Algorithm description

Let us first remind the definition of factor automaton and outline some of its properties.

Definition 2 The factor automaton M(L..q) of the string T is an automaton accepting the language Ly, such
that "N b€ Luwm , 3 (i), i<j, b = T[i, j].

The following properties of factor automata are important for our algorithm:

1. Each state of a non-deterministic factor automaton corresponds to the exactly one position in the input string 7,
see Figure 1.

2. Minimal deterministic factor automaton can be constructed in O(N) time and space [8]. Non-deterministic factor
automaton can be constructed in O(1) time.

Figure 1: Non-deterministic factor automaton for the input text 7="abac”. Note: 0-state is initial; all automaton
states are final.

475

Joxnaowr mescoynapoonoii kongpepenyuu Juanoe 2004

The main idea of the algorithm is to calculate the intersection of the patterns automaton M(L,) and the factor
automaton M(Lr...n) finding a set of occurrences from the set of final states of the resulting intersection automaton.
This can be described by the following equation:

(0,0, F,2,6)) EM(LFacz(T))a(Qz>i2’anZ’§2) =M(L,)

(Q.i,F,2,8) = M (Lpe 7)) "M (Lp),

i=ixi,,0c O, x0,,FcF xF,,6=06,n0,,

I, = Left[Q] (1)

Where (Q, i, F, 2, §) is the resulting intersection automaton; Q is a set of states, i is an initial state, F is a set of final
states; Left[Q] returns a set of states from M(Lr..), the left part of Cartesian product. I, is a set of occurrences, the
ending positions of the matched patterns.

Theorem 1 The set of occurrences 1, obtained by Equation 1 is a solution of the regular expression pattern
matching problem of the Definition .
Proof.

Suppose, 3kE 1o, s.t. T[1, kj € L-L, =8 JaeLsand beL,, s.t. T[1, k]=ab, and b€ Le.q, this contradicts the
definition of M(Lyu)-

Suppose, 3 $f, €l,, s.t. T[1, ;] € Ly-L, = $ 3 (f,.1f5) €F, where f,€F), f,€F,, = 3 b ELpm which is not a sub-string of
T, this contradicts the definition of M(Lraen)-

O

The complexity of the algorithm can be calculated as a sum of the complexities of:
1. M(P) construction from a set of regular expressions P.

2. M(Lgwm) construction from text 7.

3. Intersection calculation.

For big static rule bases, which are usually the case of computational linguistic, the corresponding automaton
construction requires to be done only once, so the first stage does not require any operations during the text
processing stage.

The complexity of the factor automaton construction is O(N) for a minimal deterministic automaton [8] and O(1) for
non-deterministic automaton. Indeed, in case of non-deterministic factor automaton, the text 7' does not require any
preprocessing at all. The text itself can serve as implicit representation of the & of M(L).

The complexity of intersection of factor automaton with automaton constructed from patterns is O(N?) in general
(note that factor automaton of the input string has number of states proportional to the input string length). However
taking into account that M(Lr..c») is acyclic and the fact that we do not require to calculate the entire intersection
automaton but only a set of its final states the time complexity of this stage can be drastically reduced.

During the intersection calculation, we associate with each state g € M(Lr..«r) a set of states from M(L,) reachable by
all possible paths from the M(Lr...n) coming into the q. These sets then can be iteratively calculated traversing the
factor automaton in the topological order. The initial association is a pair of (i;,{i.}) with only one state in associated
set.

These considerations lead us to the following pattern matching algorithm based on non-deterministic factor
automaton, see Algorithm 1. The analogous algorithm based on minimal deterministic factor automaton is not listed
here.

476

Hoknaowvl mescoynapoonoii konghepernyuu /luanoe 2004

Algorithm 1 Calculates the set {5 according to the Equation 1
Require: T - input sequence of symbols of alphabet £, M{Lp) = (Q, 1, F, £, 4)
Ensure: I, st. 'E'T[l,i] e MLy - Lp)ieln

Lo+

2. fori=1to Ndo

1 Set i) « 6(1,T[i])
+: end for

5. fori=1to N —1do
6. forallg € Set[i] do
T p+ 8(g, T[i+1])
& it p € F then

9 IoU=p

Lo end if

LL: Setfi+1] U=p
e end for

13. end for

The first loop of the algorithm processes transitions of the initial state of the implicitly specified factor automaton
M(Lr.ry)- The second loop processes all the other states except the last one as it does not have any transitions, see
Figure 1. These loops are separated here for the reason of clarity. It is possible to merge these loops making the
algorithm online over the input text. Also there is no need to remember all sets during the processing, in online
version only current and the following set should be kept. So the time complexity of Algorithm 1 is

o(|s

max N) and space complexity is O(N), where |S max is the maximum set size, which is limited by N.

2. Practical results

We made the comparison of the proposed algorithm with the traditional approach when rules had to be split into
groups and for each group a separate automaton was constructed in order to fit the memory.

For our experiments, we used rules for part-of-speech tagging in WRE notation [1]. Constructing M(L;-Ls)
automaton, it was necessary to split the rules into 5 groups. While we were able to construct M(L,) without any
splitting.

The execution process consisted of the following stages: first we read the input sentence, then assigned a digital
value to each word of the sentence and then matched the sequence of digits with the automaton/automata
constructed from the rules. We made our tests on 7.8 Mb of input plain-text corpus. The cumulative times of
execution at each stage are summarized in Table 1. Note: the first two algorithms require no preprocessing time; the
third one requires constructing minimal deterministic factor automaton and re-enumerating its states in topological
order.

Table 1: Comparison of algorithms : the first algorithm is based on rules-splitting, the second one uses non-
deterministic factor automaton, the third one uses minimal deterministic factor automaton. The numbers are
cumulative time given in seconds for processing 7.8 Mb of the input text.

Alg Input/Output, sec Digitizing, sec Preprocessing, sec Matching, sec
. 25.78 30.00 30.00 31.41
2. 25.78 30.00 30.00 31.02
25.78 30.00 31.67 32.57

The speed of text matching with M(Ls-Ly) split into 5 parts is 5.53 Mb/sec. While the speed of matching by
intersection of automaton of rules M(P) with the factor non-deterministic automaton is 7.64 Mb/sec.

As it was shown in the previous section, the maximum possible size of the set associated with ge M(Lr.n) is N.
However, for the practical rule bases the average set size is much smaller than N and can be considered as a
constant. For example for our part-of-speech tagging rules we used the average set size was about 3 which is much
smaller in comparison to the size of the input text.

477

Joxnaowr mescoynapoonoii kongpepenyuu Juanoe 2004

3. Conclusions

In this paper we presented a new approach for matching text over large rule bases represented as finite state
machines. The main advantage of the algorithm is the possibility of usage of exponentially smaller automata for
representation of rules. The results of comparison showed that matching speed can be higher using our approach
instead of traditional, when rules are split into groups.

While the matching algorithm based on intersection of minimal deterministic factor automaton of the input text with
automaton of rules showed poorer running time than algorithm based on intersection with non-deterministic factor
automaton, we believe it can be improved by more accurate implementation of the factor automaton construction.
Moreover, this algorithm can be significantly faster when there are many similar sub-strings in the large input text.
This can be the case of DNA sequences where the input alphabet size is small [10].

References

1.

© w2

1) Cheusov A. The Word-based Regular Expressions in Computational Linguistics / Proceedings of the
seventh International conference “Pattern recognition and information processing”, Minsk, 2003.

2) Brauer W. Eine Enfuhrung in die Theorie endlicher Automaten // Stuttgart, 1984.

3) Aho A., Corasick M. Efficient string matching: an aid to bibliographic search / Comm. ACM. 1975. Vol
18. pp. 333-340.

4) Weiner P. Linear pattern matching algorithms // Proc. of the 14-th IEEE Symp. on Switching and Automata
Theory. 1973. pp. 1-11.

5) McCreight E!M. A space-economical suffix tree construction algorithm // JJACM. 1976. Vol. 23. pp. 262-
272.

6) Ukkonen E. On-line construction of suffix-trees // Algorithmica. 1995. Vol. 14. pp. 249-260.
7) Mohri M. String-matching with automata // Nordic Journal of Computing, 1995.
8) Crochemore M. and Hancart C. Automata for matching patterns, 1996.

9) Baeza-Yates R.A., Gonnet G.H. Fast text searching for regular expressions or automaton searching on tries
// Journal of the ACM, Vol. 43, No. 6, November 1996.

. 10) Gusfield D. Algorithms on Strings, Trees and Sequences. Computer science and computational biology, //

Cambridge University Press, 1997.

478

	Introduction
	1. Algorithm description
	2. Practical results
	3. Conclusions
	References

