Automatic Evaluation of Machine Translation Quality

Lluís Màrquez

TALP Research Center Tecnhical University of Catalonia (UPC)

> Invited talk at **Dialogue 2013** Bekasovo Resort, Russia May 30, 2013

Joint work with:

Jesús Giménez, Lluís Formiga and Meritxell Gonzàlez

- 2 Linguistically-motivated Measures
- 3 Intelligent MT output and error analysis
- Quality Estimation

Talk Overview

- 2 Linguistically-motivated Measures
- Intelligent MT output and error analysis
- 4 Quality Estimation

MT System Development Cycle

Difficulties of MT Evaluation

- Machine Translation is an open NLP task
 - ⇒ the *correct translation* is not unique
 - \Rightarrow the set of valid translations is not small
 - \Rightarrow translation correctness is not black and white
- Quality aspects are *heterogeneous*
 - \Rightarrow Adequacy (or Fidelity)
 - \Rightarrow Fluency (or Intelligibility)
 - \Rightarrow Post-editing effort (time, key strokes, ...)
 - ⇒ ...
- Manual vs. automatic evaluation

Setting:

⇒ Compute similarity between system's output and one or several reference translations

⇒ The similarity measure should be able to discriminate whether the two sentences convey the same meaning (semantic equivalence)

Setting:

⇒ Compute similarity between system's output and one or several reference translations

Challenge:

⇒ The similarity measure should be able to discriminate whether the two sentences convey the same meaning (semantic equivalence)

First Approaches:

 \Rightarrow Lexical similarity as a measure of quality

First Approaches:

 \Rightarrow Lexical similarity as a measure of quality

- Edit Distance WER, PER, TER
- Precision
 BLEU, NIST, WNM
- Recall
 ROUGE, CDER
- Precision/Recall GTM, METEOR, BLANC, SIA

First Approaches:

 \Rightarrow Lexical similarity as a measure of quality

- Edit Distance WER, PER, TER
- Precision
 BLEU, NIST, WNM
- Recall
 ROUGE, CDER
- Precision/Recall GTM, METEOR, BLANC, SIA

• BLEU has been widely accepted as a 'de facto' standard

IBM BLEU metric

BLEU: a Method for Automatic Evaluation of Machine Translation Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu IBM Research Division

"The main idea is to use a weighted average of variable length phrase matches against the reference translations. This view gives rise to a family of metrics using various weighting schemes. We have selected a promising baseline metric from this family."

IBM BLEU metric

Conclusions of the paper (Papineni et al., 2001)

- BLEU correlates with human judgements
- It can distinguish among similar systems
- Need for multiple references or a big test with heterogeneous references
- More parametrisation in the future

Benefits of Automatic Evaluation

Compared to manual evaluation, automatic measures are:

Cheap (vs. costly)
Objective (vs. subjective)
Reusable (vs. not-reusable)

Automatic evaluation metrics have notably accelerated the development cycle of MT systems

Error analysisSystem optimizationSystem comparison

Benefits of Automatic Evaluation

Compared to manual evaluation, automatic measures are:

Cheap (vs. costly)
Objective (vs. subjective)
Reusable (vs. not-reusable)

Automatic evaluation metrics have notably accelerated the development cycle of MT systems

Error analysis
 System optimization
 System comparison

- System overtuning → when system parameters are adjusted towards a given metric
- Solution State State
- Output Stress of the system comparisons → when metrics are unable to reflect difference in quality between MT systems

- System overtuning → when system parameters are adjusted towards a given metric
- Solution State State
- Output Stress of the system comparisons → when metrics are unable to reflect difference in quality between MT systems

- System overtuning → when system parameters are adjusted towards a given metric
- **Blind system development** → when metrics are unable to capture actual system improvements
- Output Stress of the system comparisons → when metrics are unable to reflect difference in quality between MT systems

- System overtuning → when system parameters are adjusted towards a given metric
- Is Blind system development → when metrics are unable to capture actual system improvements
- Output Stress of the system comparisons → when metrics are unable to reflect difference in quality between MT systems

- Lexical similarity is nor a *sufficient* neither a *necessary* condition so that two sentences express the same meaning (Culy and Riehemann, 2003; Coughlin, 2003; Callison-Burch et al., 2006)
- The reliability of lexical metrics depends very strongly on the heterogeneity/representativity of reference translations
- Lexical metrics have problems distinguishing MT output from fully fluent and adequate translations obtained from them through professional postediting (Denkowski and Lavie, 2012)

NIST 2005 Arabic-to-English Exercise

(Callison-Burch et al., 2006; Koehn and Monz, 2006)

()

NIST 2005 Arabic-to-English Exercise

(Callison-Burch et al., 2006; Koehn and Monz, 2006)

NIST 2005 Arabic-to-English Exercise (Callison-Burch et al., 2006; Koehn and Monz, 2006)

- ⇒ n-gram based metrics favor MT systems which closely replicate the lexical realization of the references
- ⇒ Test sets tend to be similar (domain, register, sublanguage) to training materials
- \Rightarrow Statistical MT systems heavily rely on the training data
- ⇒ Statistical MT systems tend to share the reference sublanguage and be favored by n-gram based measures

NIST 2005 Arabic-to-English Exercise (Callison-Burch et al., 2006; Koehn and Monz, 2006)

- ⇒ n-gram based metrics favor MT systems which closely replicate the lexical realization of the references
- ⇒ Test sets tend to be similar (domain, register, sublanguage) to training materials
- \Rightarrow Statistical MT systems heavily rely on the training data
- ⇒ Statistical MT systems tend to share the reference sublanguage and be favored by *n*-gram based measures

Talk Overview

2 Linguistically-motivated Measures

Intelligent MT output and error analysis

4 Quality Estimation

Can we do better?

- 1. Compare to a very large set of references
 - HyTER (Dreyer and Marcu, 2012)
 - ⇒ Construct for every test case a compact network encoding an exponentially large number of meaning equivalent reference translations
 - ⇒ Compute a TER-based similarity over the whole set of translation equivalents
 - \Rightarrow HyTER correlates much better with human assessments
 - $\Rightarrow~$ But the cost of generating the graphs is very high

Can we do better?

- 1. Compare to a very large set of references
 - HyTER (Dreyer and Marcu, 2012)
 - ⇒ Construct for every test case a compact network encoding an exponentially large number of meaning equivalent reference translations
 - ⇒ Compute a TER-based similarity over the whole set of translation equivalents
 - \Rightarrow HyTER correlates much better with human assessments
 - \Rightarrow But the cost of generating the graphs is very high

Can we do better?

- 2. Generalize over lexical matching
 - Lexical variants
 - ⇒ Morphological information (i.e., stemming) ROUGE and METEOR
 - ⇒ Synonymy lookup: METEOR (based on WordNet)
 - Paraphrasing support:
 - ⇒ (Zhou et al., 2006; Kauchak and Barzilay, 2006; Owczarzak et al., 2006)
 - \Rightarrow Recent versions of METEOR, TER

Similarity Measures Based on Linguistic Features

- 3. More linguistically-motivated measures
 - Features capturing syntactic and semantic information
 - Shallow parsing, constituency and dependency parsing, named entities, semantic roles, textual entailment, discourse representation
 - Very extense bibliography in the last years Check (Giménez and Màrquez 2010) for a survey

Some Examples of Linguistically Motivated Measures

- Expected Dependency Pair Match (Kahn, Snover and Ostendorf, 2009)
 - \Rightarrow dependency parsing (PCFG + head-finding rules)
 - \Rightarrow precision and recall scores of various tree decompositions
 - \Rightarrow +synonymy +paraphrasing
- MaxSim (Chen and Ng; 2008)
 - \Rightarrow a general framework for arbitrary similarity functions
 - \Rightarrow dependency relations, lemma, parts of speech, synonymy
 - \Rightarrow bipartite graph to obtain an optimal matching between items
- RTE (Padó, Galley, Jurafsky and Manning, 2009)
 - \Rightarrow semantic equivalence based on textual entailment features
 - ⇒ alignment, semantic compatibility, insertion/deletion, preservation of reference and structural alignment

Some Examples of Linguistically Motivated Measures

- Expected Dependency Pair Match (Kahn, Snover and Ostendorf, 2009)
 - \Rightarrow dependency parsing (PCFG + head-finding rules)
 - \Rightarrow precision and recall scores of various tree decompositions
 - \Rightarrow +synonymy +paraphrasing
- MaxSim (Chen and Ng; 2008)
 - \Rightarrow a general framework for arbitrary similarity functions
 - \Rightarrow dependency relations, lemma, parts of speech, synonymy
 - \Rightarrow bipartite graph to obtain an optimal matching between items
- RTE (Padó, Galley, Jurafsky and Manning, 2009)
 - \Rightarrow semantic equivalence based on textual entailment features
 - ⇒ alignment, semantic compatibility, insertion/deletion, preservation of reference and structural alignment

Work at UPC with Jesús Giménez

Rather than comparing sentences at lexical level:

Compare the linguistic structures and the words within them

Automatic	On Tuesday several missiles and mortar
Translation	shells fell in south Kabul , but there were
	no casualties .
Reference	Several rockets and mortar shells fell today ,
Translation	Tuesday , in south Kabul without causing any
	casualties .

Our Approach

Our Approach

(Giménez & Màrquez, 2010)

 \clubsuit

Measuring Structural Similarity

- OVERLAP: generic similarity measure among Linguistic Elements. Inspired by the Jaccard similarity coefficient
- Linguistic element (LE) = abstract reference to any possible type of linguistic unit, structure, or relationship among them
 - \Rightarrow For instance: POS tags, word lemmas, NPs, syntactic phrases
 - ⇒ A sentence can be seen as a bag (or a sequence) of LEs of a certain type
 - \Rightarrow LEs may embed

Measuring Structural Similarity

- OVERLAP: generic similarity measure among Linguistic Elements. Inspired by the Jaccard similarity coefficient
- Linguistic element (LE) = abstract reference to any possible type of linguistic unit, structure, or relationship among them
 - \Rightarrow For instance: POS tags, word lemmas, NPs, syntactic phrases
 - \Rightarrow A sentence can be seen as a bag (or a sequence) of LEs of a certain type
 - \Rightarrow LEs may embed

Overlap among Linguistic Elements

t is the LE type 'hyp': hypothesized translation 'ref': reference translation $tems_t(s)$: set of items occurring inside LEs of type *t* $count_s(i, t)$: occurrences of item *i* in *s* inside a LE of type *t*

Overlap among Linguistic Elements

Coarser variant: micro-averaged overlap over all types

T: set of all LE types associated to the given LE class

Overlap/Matching among Linguistic Elements

• Matching is a similar but more strict variant

- \Rightarrow All items inside an element are considered the same unit
- ⇒ Computes the proportion of fully translated LEs, according to their types
- Other possible extensions:
 - \Rightarrow *n*-gram matching within LEs
 - \Rightarrow Synonymy lookup

Overlap/Matching among Linguistic Elements

• Matching is a similar but more strict variant

- \Rightarrow All items inside an element are considered the same unit
- ⇒ Computes the proportion of fully translated LEs, according to their types
- Other possible extensions:
 - \Rightarrow *n*-gram matching within LEs
 - \Rightarrow Synonymy lookup

Overlap/Matching among Linguistic Elements

- Overlap and Matching have been instantiated over different linguistic level elements (for English)
 - \Rightarrow Words, lemmas, POS
 - \Rightarrow Shallow, dependency and constituency parsing
 - \Rightarrow Named entities and semantic roles
 - \Rightarrow Discourse representation (logical forms)

NIST 2005 Arabic-to-English Exercise

(Callison-Burch et al., 2006; Koehn and Monz, 2006)

Level	Metric	$ ho_{all}$	ρ _{SMT}
Lexical	BLEU	0.06	0.83
	METEOR	0.05	0.90
	Parts-of-speech	0.42	0.89
Syntactic	Dependencies (HWC)	0.88	0.86
	Constituents (STM)	0.74	0.95
	Semantic Roles	0.72	0.96
Semantic	Discourse Repr.	0.92	0.92
	Discourse Repr. (PoS)	0.97	0.90

Level	Metric	$ ho_{ m all}$	$ ho_{SMT}$
Lexical	BLEU	0.06	0.83
	METEOR	0.05	0.90
	Parts-of-speech	0.42	0.89
Syntactic	Dependencies (HWC)	88.0	0.86
	Constituents (STM)	0.74	0.95
	Semantic Roles	0.72	0.96
Semantic	Discourse Repr.	0.92	0.92
	Discourse Repr. (PoS)	0.97	0.90

Level	Metric	$ ho_{ m all}$	ρ _{SMT}
Lexical	BLEU	0.06	0.83
	METEOR	0.05	0.90
	Parts-of-speech	0.42	0.89
Syntactic	tic Dependencies (HWC)		0.86
	Constituents (STM)	0.74	0.95
Semantic Roles		0.72	0.96
Semantic	Discourse Repr.	0.92	0.92
	Discourse Repr. (PoS)	0.97	0.90

Level	Metric	$ ho_{ m all}$	$ ho_{SMT}$
Lexical	BLEU	0.06	0.83
	METEOR	0.05	0.90
	Parts-of-speech	0.42	0.89
Syntactic	Dependencies (HWC)	0.88	0.86
	Constituents (STM)	0.74	0.95
	Semantic Roles	0.72	0.96
Semantic	Discourse Repr.	0.92	0.92
	Discourse Repr. (PoS)	0.97	0.90

Towards Heterogeneous Automatic MT Evaluation

Lexical Similarity

Syntactic Similarity

Semantic Similarity

Towards Heterogeneous Automatic MT Evaluation

- Different measures capture different aspects of similarity Suitable for combination
- Extense bibliography on learning to combine evaluation measures. Check (Giménez and Màrquez 2010) for a survey

The Most Simple Approach: ULC

Uniformly averaged linear combination of measures (ULC):

$$ULC_M(hyp, ref) = \frac{1}{|M|} \sum_{m \in M} m(hyp, ref)$$

- Simple hill climbing approach to find the best subset of measures *M* on a development corpus
- $M = \{ `ROUGE_W', `METEOR', `DP-HWC_r', `DP-O_c(*)', `DP-O_l(*)', `DP-O_r(*)', `CP-STM_4', `SR-O_r(*)', `SR-O_{rv}', `DR-O_{rp}(*)' \}$

The Most Simple Approach: ULC

Uniformly averaged linear combination of measures (ULC):

$$ULC_M(hyp, ref) = \frac{1}{|M|} \sum_{m \in M} m(hyp, ref)$$

- Simple hill climbing approach to find the best subset of measures *M* on a development corpus
- $M = \{ "ROUGE_W", "METEOR", "DP-HWC_r", "DP-O_c(*)", "DP-O_l(*)", "DP-O_r(*)", "CP-STM_4", "SR-O_r(*)", "SR-O_{rv}", "DR-O_{rp}(*)" \}$

Evaluation of ULC

. . .

WMT 2008 meta-evaluation results (into-English)

Measure	$ ho_{sys}$	consistency _{snt}
ULC	0.83	0.56
DP-O _r (*)	0.83	0.51
DR-O _r (*)	0.80	0.50
METEOR ranking	0.78	0.51
SR-O _r (*)	0.77	0.50
METEOR baseline	0.75	0.51
PoS-BLEU	0.75	0.44
PoS-4gram-F	0.74	0.50
BLEU	0.52	
BLEU <i>stem+wnsyn</i>	0.50	0.51

Evaluation of ULC

. . .

WMT 2009 meta-evaluation results (into-English)

Measure	$ ho_{sys}$	consistency _{snt}	
ULC	0.83	0.54	
maxsim	0.80	0.52	
<mark>rte</mark> (absolute)	0.79	0.53	
meteor-rank	0.75	0.49	
<mark>rte</mark> (pairwise)	0.75	0.51	
terp	-0.72	0.50	
meteor-0.6	0.72	0.49	
meteor-0.7	0.66	0.49	
bleu-ter/2	0.58		
nist	0.56	—	
wpF	0.56	0.52	
ter	-0.54	0.45	

Portability Across Corpora

NIST 2004/2005 MT Evaluation Campaigns

	AE ₂₀₀₄	CE ₂₀₀₄	AE ₂₀₀₅	CE ₂₀₀₅
#references	5	5	5	4
$\# outputs_{\mathrm{ass.}}$	5/5	10/10	6/7	5/10
$\#$ sentences $_{ m ass.}$	347/1,353	447/1,788	266/1,056	272/1,082
Avg. Adequacy	2.81/5	2.60/5	3.00/5	2.58/5
Avg. Fluency	2.56/5	2.41/5	2.70/5	2.47/5

Portability Across Corpora

Meta-evaluation of ULC across test beds (Pearson Correlation)

	AE_{04}	CE_{04}	AE_{05}	CE ₀₅
ULC (_{AE04})		0.6294		0.5695
ULC (_{CE04})				0.5692
ULC (<i>AE</i> 05)				0.5706
ULC (_{CE05})	0.6218	0.6208	0.5270	0.6047
Max Indiv.	0.5877	0.5955	0.4960	0.5348

Linguistic Measures at International Campaigns

- Many MT evaluation campaigns have been conducted in the last years under NIST, WMT and IWSLT events
- Controversial results at NIST Metrics MATR08/09 Challenges, with bad results in general for linguistic-based evaluation measures
- Finding a practical robust automatic evaluation metric, which correlates well with human assessments is still an open problem

Summary

- Evaluation methods play a crucial role
- Measuring overall translation quality is hard
 Quality aspects are heterogeneous and diverse
- What can we do?
 - \Rightarrow Advance towards heterogeneous evaluation methods
 - \Rightarrow Metricwise system development

Always meta-evaluate (make sure your metric fits your purpose)

 \Rightarrow Resort to manual evaluation

Always conduct manual evaluations (contrast your automatic evaluations) Always do error analysis (semi-automatic)

Talk Overview

2 Linguistically-motivated Measures

Intelligent MT output and error analysis

Quality Estimation

MT output and error analysis

 $\operatorname{AsiyA:}$ An Open Toolkit for Automatic MT Evaluation

- ⇒ Integrates all the evaluation measures from (Giménez and Màrquez, 2010)
- \Rightarrow Goal: to facilitate a practical analysis of large and complex test suites, along several dimensions
 - > System evaluation and comparison with a rich family of metrics
 - ▷ Error analysis
 - Meta-evaluation of evaluation metrics
- $\Rightarrow\,$ Useful for MT system and evaluation metric developers
- Available and downloadable from: http://www.lsi.upc.es/~nlp/Asiya/

MT output and error analysis

Recent developments

- \Rightarrow ASIYA *in the cloud* (Gonzàlez et al., 2012;2013)
 - 1. ASIYA Web Service
 - 2. ASIYA Online Interface
 - **3.** ASIYA *t*SEARCH module
- $\Rightarrow\,$ Demo video at the same $A{\rm SIYA}$ website

Talk Overview

Automatic MT Evaluation

2 Linguistically-motivated Measures

Intelligent MT output and error analysis

Quality Estimation

Quality Estimation (QE)

- \Rightarrow Estimate translation quality without reference translations
- \Rightarrow Information available
 - Source sentence, candidate translation(s), and some MT system information
- \Rightarrow Application scenarios
 - $\,\triangleright\,$ Informing MT end-users about estimated translation quality
 - D Quality-oriented filtering of translated texts
 - \Rightarrow identify translations requiring manual post-edition
 - \Rightarrow identify useful post-editions from users
 - Ranking of several translation alternatives
 - \Rightarrow system selection, parameter optimization

Quality Estimation (QE)

- \Rightarrow Estimate translation quality without reference translations
- \Rightarrow Information available
 - Source sentence, candidate translation(s), and some MT system information
- \Rightarrow Application scenarios
 - $\,\triangleright\,$ Informing MT end-users about estimated translation quality
 - > Quality-oriented filtering of translated texts
 - $\Rightarrow~$ identify translations requiring manual post-edition
 - $\Rightarrow\,$ identify useful post-editions from users
 - Ranking of several translation alternatives
 - \Rightarrow system selection, parameter optimization

QE approaches

- ⇒ Scoring task to predict the absolute quality of the automatic translation of an input text
 - ▷ Usually implemented as a regression function
 - Also as a direct ranking between translation alternatives
 - Supervised learning from a training set with human assessments

Relevant work

- ⇒ Johns Hopkins University Summer Workshop, 2003 "Confidence Estimation for Machine Translation" (Blatz et al., 2003)
- \Rightarrow Recent work:

(Specia et al., 2009;2010), (Soricut and Echihabi, 2010), (Giménez and Specia 2010), (Pighin et al., 2011), (Avramidis, 2012), **etc.**

⇒ WMT 2012 shared task on Quality Estimation (Callison-Burch et al., 2012) (2nd edition at WMT 2013)

Features to train the QE measures

- System-dependent
- System-independent

Features to train the QE measures

- System-dependent
 - \Rightarrow internal system probabilities/scores
 - \Rightarrow features over *n*-best translation hypotheses
 - language modeling
 - hypothesis rank
 - score ratio
 - average hypothesis length
 - length ratio
 - center hypothesis

• System-independent

Features to train the QE measures

- System-dependent
- System-independent
 - ⇒ Source (translation *difficulty*)
 - sentence length
 - ▷ ambiguity → dictionary/alignment/WordNet-based (number of candidate translations per word or phrase)
 - ⇒ Target (translation *fluency*)
 - sentence length
 - language modeling
 - ⇒ Source-Target (translation *adequacy*)
 - length ratio
 - punctuation issues
 - $\triangleright \ \ \text{candidate matching} \rightarrow \text{dictionary-/alignment-based}$

QE challenges

- \Rightarrow QE is as difficult as MT itself!
- \Rightarrow Real adequacy-based QE measures are difficult to apply
 - Training sets are small
 - Involving sophisticated linguistic knowledge easily leads to severe data sparseness

The FAUST Project (2010-2013)

- Feedback Analysis for User Adaptive Statistical Translation
- FP7-ICT-2009-4 (Language-based interaction)
- http://divf.eng.cam.ac.uk/faust
- **Goal** Develop interactive machine translation systems which adapt rapidly and intelligently to user feedback
 - Challenges in FAUST: real life MT
 - \Rightarrow Open general translation
 - \Rightarrow Casual users (feedback is unreliable)
 - ⇒ Non-standard and noisy translation texts
 - \Rightarrow Rapid integration of feedback is required

The FAUST Project (2010-2013)

- Feedback Analysis for User Adaptive Statistical Translation
- FP7-ICT-2009-4 (Language-based interaction)
- http://divf.eng.cam.ac.uk/faust
- **Goal** Develop interactive machine translation systems which adapt rapidly and intelligently to user feedback
 - Challenges in FAUST: real life MT
 - \Rightarrow Open general translation
 - ⇒ Casual users (feedback is unreliable)
 - \Rightarrow Non-standard and noisy translation texts
 - \Rightarrow Rapid integration of feedback is required

Task Training a combination of simple QE features to produce better predictors of translation quality on FAUST data

- Setting
 - ⇒ We used human feedback in the form of translation quality pairwise rankings. FAUST benchmark corpus: \sim 1,900 input segments (en-es), translated by 5 MT systems
 - \Rightarrow Use of several feature families. Some novel
 - \Rightarrow Regression vs. ranking SVM learning
 - \Rightarrow Evaluation in terms of:
 - Correlation of the predicted rankings with the gold standard
 - Selection of the best translation (system combination)

We considered features from 4 different families

- 1. Specia Baseline (17) (Specia et al., 2010)
 - ▷ token counts and their ratio, LM probabilities, *n*-grams filtered by quartiles, punctuation marks and fertility ratios
- 2. ASIYA QE features (26) (Gonzàlez et al., 2012)
 - bilingual dictionary ambiguity and overlap; overlap ratios on chunks, named-entities and PoS; source and candidate language model perplexities and inverse perplexities over lexical forms, chunks and PoS and out-of-vocabulary word indicators
- 3. Features based on adapted Language Models (2)
 - Words and POS tags. Interpolation weights were computed as to minimize the perplexity according to the Spanish FAUST development set

We considered features from 4 different families

- 4. Pseudo-reference based features (Soricut and Echihabi, 2010)
 - Idea: automatically produced translations by other systems are taken as references
 - Rationale: if system X produced a translation A and system Y produced a translation B starting from the same input, and A and B are similar and X and Y are different systems, then A is probably a good translation
 - ▷ Calculated with BLEU, NIST, METEOR, etc. (5) but also with the linguistic-based metrics from ASIYA (23)

- Main Results on FAUST test data
 - $\Rightarrow\,$ It is possible to learn reasonably good QE models from the FAUST annotated corpus, exhibiting fair correlation with the gold-standard rankings
 - $\Rightarrow\,$ For the system selection task, pairwise ranking yields better results than regression
 - ⇒ Results are clearly over the baselines. They are also slightly over the system-informed Oracle-D(ominant)
 - \Rightarrow All proposed extensions of the basic feature set were useful to boost the quality of the QE modelssystem selection task

Learning Quality Estimation measures (FAUST)

- Quality of the predicted rankings
 - \Rightarrow Spearman correlation (ρ): 33.86 **38.43**
 - \Rightarrow Kendall correlation (τ): 29.67 **33.02**
 - \Rightarrow Accuracy of pairwise rankings: 44.67 58.11
 - \Rightarrow Accuracy at predicting best translation: 39.44 51.11

• Results on the system selection task

Learning Quality Estimation measures (FAUST)

- Quality of the predicted rankings
 - \Rightarrow Spearman correlation (ρ): 33.86 **38.43**
 - \Rightarrow Kendall correlation (τ): 29.67 **33.02**
 - \Rightarrow Accuracy of pairwise rankings: 44.67 58.11
 - \Rightarrow Accuracy at predicting best translation: 39.44 51.11
- Results on the system selection task

	Baseline	Ranker	OracleD	OracleB
Bleu	33.64	38.28	37.57	44.91
Meteor	48.34	54.19	54.09	58.15
NIST	33.64	38.28	37.57	44.91

Contribution of every family of features

Thank you!

Automatic Evaluation of Machine Translation Quality

Lluís Màrquez

TALP Research Center Tecnhical University of Catalonia (UPC)

> Invited talk at **Dialogue 2013** Bekasovo Resort, Russia May 30, 2013