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1. Introduction

Proper names cross-language transcription is an essential problem in many 
spheres — from linguistic topics, like machine translation or information re-
trieval, to some purely practical ones — for example, when translating documents 
or maps.

There are several ways to reproduce names with the means of other language:

• Translation (for example, Easter Island — остров Пасхи). Interpreters rarely 
use this way. Translation is impossible in many cases as proper names usually 
don’t have any lexical meaning.

• Transliteration:
• Strict transliteration — every letter of alphabet of the source language is as-

sociated with a letter in target language. This way of transfer can misrepre-
sent phonetic appearance of the word as almost every language has di- or tri-
graphs — that is set combinations of letters that should be read in a specifi c 
way. Even rules of extended transliteration (rules that allow to transform 
one letter of source alphabet to two or more letters of target alphabet) are 
not always suffi cient to defi ne all relations between phonetics and graphics.

• Transliteration with regard for phonetic appearance of the word. This 
method is usually called practical transcription.

At different times different approaches to translation of names entities were pop-
ular among translators, but since the middle of 20th century most of translators agree 
that name should keep its sounding. Progress in computational linguistics has raised 
a question of automatic transcription of proper names.

Currently there already exist a lot of various methods of cross-language trans-
literation. They are based on different approaches and use different techniques: sto-
chastic state-fi nite automata, Viterbi decoding algorithm, learning of statistic ma-
chine translation systems. Vast majority of existing methods are based on statistics. 
This approach is often effective because it doesn’t need to involve specifi c linguistic 
information. But its simplicity is paid with necessity in huge amounts of learning 
data, which is often inaccessible. While other groups of researches develop meth-
ods of automatic data retrieval or generate cross-language phoneme or letter map-
pings using monolingual corpora, we tried to work out a “clever” method of rules 
generation.

Our work is based on the system “Transscriba” [11]. This is a rule-based system, 
that means that transliteration model is a set of rules, constructed manually by ex-
pert. Such approach provides very high accuracy of transliteration, but it takes from 
two weeks to six months of an expert’s work to construct a system of rules for one pair 
of languages. Moreover, “Transscriba” has one more drawback. Its method of strings 
transformation is ineffective as speed of parsing depends on amount of rules in the 
system. In Section 4 we demonstrate effective method of strings processing with gen-
erated rules. Section 5 introduces the method of automatic learning of cross-language 
transcription rules from small training set.
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2. Related works

First attempts to work out system of rules of transliteration relate to pre-com-
puter epoch. There are plenty of works that should rather be treated as recommenda-
tions for translator than a code of laws, but these recommendations have later become 
basis of formal rules used in machine transliteration systems [9, 10].

As for machine transliteration itself, one of the fi rst works that had determined 
direction of many researches in this area is work [3]. It describes transliteration and 
back-transliteration between English and Japanese languages. The model is trained 
with modifi ed Viterbi algorithm. Transliteration is accomplished by a chain of statisti-
cal fi nite-state transducers. Output of every automaton is an input of the next one.

Later this method was adapted for the Arabic language [1]. However, fundamen-
tal principle of those works was recognition of separate characters and their groups. 
It didn’t allow to raise quality of transliteration. So researches started working with 
chained substrings [5]. Such replacement allowed to improve transliteration accuracy 
from 30 % to 90 %.

The above mentioned chain of fi nite-state automata served as a basis for many 
other methods. Jonathan Grael has developed an instrument that constructs a chain 
of automata that can be trained on user’s data. This tool was widely used in many 
works on machine transliteration [2].

Another popular method is learning of cross-language mappings using phrase-
based machine translation systems. While during translation minimal unit is a word 
and sentences are regarded as word successions, during transliteration minimal unit 
is a letter and main analyzed unit is a word.

There are a lot of techniques of machine transliteration. As we can’t specify all 
of them in this paper, we will name main parameters in which different methods vary:

• Letter / phoneme substitution — some methods work with letters and sub-
strings [5] and others transform letters in phonetic notation and look for pho-
neme cross-language mappings [3]

• Statistical / rule-based models — cross-language mappings can be acquired 
with statistic analysis of test data or using some heuristic model

• Manual / automatic generation of learning data — for statistic-based mod-
els size and quality of test data is very important. Some researches are satisfi ed 
with manually-constructed sets, others use multilingual dictionaries of names 
and terms [3, 5, 7], acquire parallel examples from bilingual corpora [6], or even 
learn on unilingual data [4].

3. Preliminaries

We will speak about transduction of word from one language to another. So our 
method deals with pairs of languages, one of which is a source language (language 
of original) and another is a target language (language of translation). Let we denote 
alphabet of source language as VI, and alphabet of target language as VO.
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Let we denote letters of VO and VI with letters of Latin alphabet, strings of letters 
from VI and VO are denoted with letters of Greek alphabet. Letters i, j, m and n are 
reserved for enumerations.

The aim of present research is to work out a method that allows to generate cross-lan-
guage letter mappings: in other words, to determine substitutions for letters or substrings 
of source language among letters or substrings of target language. Let we defi ne rules 
of transliteration from source language into target language as these letter mappings.

In our implementation rule is a pair r = <p, >, where:
p = <pl, , pr>, where pl and pr are pre-condition and post-condition, α is a trans-

duced string, pl = {1, 2, …, n }, γiVI
+, pr = {1, 2, …, m }, iVI

+,
β — output string. String that substitutes for string α in target language.
Consequently the rule is applicable to the current position means that symbols 

from α are following from the current position, α is preceded by a substring that has 
symbols from pl on appropriate positions and followed by a substring that has symbols 
from pr on appropriate positions.

We sequentially look for rules that can be applied to the input string. If we fi nd 
one, we move the current position by || symbols from current position and return .

We learn rules of transliteration from a manually-constructed learning set, which 
consists of proper names in source language and their transliterations into target language.

During the process of rules generation we need some more information about 
the rule: how many times and in which situations it was applied. So when learning 
we use full rule format, that is represented as a triplet r = <p, , w>, where p and 
 are the same as in format listed above and w = {<w1, pos1>, … , <wn, posn>}, where 
wi is a word from the learning set that satisfi es the rule r, posi is a number that indi-
cates position of the fi rst symbol from  in wi.

4. Method of string transformation

We needed a method of strings processing which is linear with respect to length 
of string and doesn’t depend on amount of rules in the system.

We have decided to transform strings with state fi nite machine as it provides 
linear speed of parsing. We use an extended fi nite state transducer of the following 
structure: g = <VI, VO, Q, q0, F, >

VI — input alphabet (source alphabet);
VO — output alphabet (target alphabet) ;
Q — automaton’s states set;
q0 — initial state;
F — fi nal states set;
 — next-state function QVI  <Q, a>. It defi nes state we should move from the 

current state if we receive a certain input symbol, aA is a set of actions committed 
during transition to the new state. A = {Out(), Shift()}:

Out() — function returning a substring  (can be empty) from the target alphabet.
Shift(n) — procedure that skips n symbols of the processed string. The default 

value of n is 1, that means that during a transition automaton moves to the next symbol.
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Every fi nal state has a transition to the initial state by the empty symbol.
The automaton is constructed from a set of rules (see section 3). Rules are se-

quentially added to the automaton. We start adding every rule from the initial state 
of the automaton.

If rule doesn’t have context, that is r(pl) = r(pr) = , we use the following algo-
rithm of transformation.

Algorithm 1. Transformation of rule without context.

1.  Add new state and move from the initial state to the new state by the fi rst 
symbol from 

2.  Move from current state ni to state ni+1 by every following symbol of  (state 
ni+1 is newly constructed)

3.  State nz which we have come by the last symbol of  becomes a fi nal state
4.  Add action Out() to the transition to the fi nal state nz. In other words, if we meet 

substring  in a processed string, we add its transliteration () to the output string.

Note that value of function Shift() for every constructed transition is 1.
If rule has contexts, the procedure of its transformation is a little different.
Algorithm 2. Transformation of rule with context.

1.  Add new state and move from the initial state to the new state by the fi rst 
symbol from  and set Shift() = ||  (-1), γ  r(pl) — after checking the fi rst 
symbol we return back to check context;

2. Commit step 2 of Algorithm1 for every γi  r(pl),
3. Commit step 2 of Algorithm1 for α
4.  Commit steps 2–4 of Algorithm1 for every δi  r(pr) BUT set meaning 

of Shift() for the last transition to |δ-1|  (-1), δ  r(pr) — after checking the 
rule and its post-context we return back to parse context separately.

Note that transformation demands that all γ  r(pl) have the same length and all 
δ  r(pr) have the same length, yet there is no request to |γ| and |δ| to be equal. More-
over, presence of one of contexts doesn’t mean presence of the other.

Automaton constructed from system of rules using Algorithms 1 and 2 can turn 
out to be nondeterministic if there is a pair of rules r1 and r2 such that r1(α) = <u1, u2, 
…, un>, r2(α) = <v1, v2, …, vm> and u1 = v1. Of course one can process strings with 
nondeterministic automaton, but in this case it loses its advantage of speed. To keep 
this advantage we use standard procedure of determinization of state automaton [8].

5. Method of rules generation

Algorithm of rules generation can be divided into two main steps:
1. generation of initial rules;
2. generation of complicated rules.
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5.1. Initial rules

We call “initial rules” all the rules that can be discovered through rather simple 
operations. Even so rules themselves can be nontrivial.

The core of rules generation process is association of substrings of original 
names with corresponding substrings of their translations. In other methods this pro-
cess is purely statistical, but we use other approach.

Ideally name and its translation should consist of the same phoneme succession 
to be recognizable. For the initial stage of algorithm let we assume that in every lan-
guage consonant phoneme is written down with one or more consonant letters and 
vowel phoneme — with vowel letters. From this assumption we deduce that conso-
nant letters usually transform to consonant letters and vowels — to vowels.

In compliance with our hypothesis we divide each word (both original and transla-
tion) into groups of consonants and vowels. Let us defi ne predicate isVowel( l ), which 
returns true if l is vowel and false otherwise for every l  VI  VO. For every word w = 
l1l2…ln bound of group is placed between all such li and li+1 that isVowel(li) ≠ isVowel(li+1).

So each name can be represented as a pair w = <in, out>, where:
in = <in1, in2, … , inn> — set of nonempty chains of letters from VI

out = <o1, o2, …, om> — set of nonempty chains of letters from VO

Then for every word w from learning set, where |in| = |out|, we form n rules 
where n = |in| = |out|

ri(pl) = ri(pr) = , ri() = ini, ri() = oi.
In other words, we just match i-th group of original name with the i-th group 

of translated name, provided that name and translation have equal number of groups 
and i-th group of original have the same type (consonant or vowel) as i-th group 
of translation (see ex. 1). These mappings form the set of rules-candidates R.

Example 1
R | u | gg | ie | r | o M | a | cch | i
R | u | dzh | e | r | o M | a | kk | i
r  r, u  u, gg  dzh, ie  e, o  o, m  m, a  a, cch  kk, i  i

Example of generation of initial rules from names (Italian-English dataset). 
Vertical lines denote bounds of groups. Corresponding groups of original names and 
translations are united into rules

After having generated set of rules-candidates we reduce it. We remove rare 
rules: rules that occur in our set only once or twice. We consider them to be arbitrary 
letter combinations. Then we remove too big rules — rules whose left side is longer 
than 3 symbols. We suppose that it can be later explained with several shorter rules. 
Of course, this solution isn’t always correct as one sound may be written down by four 
or more letters. So we don’t remove rule with left side longer than 3 letters if its right 
side consists of only one letter.

We also remove rules that can be explained with shorter rules. Formally speak-
ing, if for rule r0 = <p, > exist r1, …, rnR such that r0() = r1() + r2() + … + rn() 
and r0() = r1() + r2() + … + rn(), then r0 should be removed.
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After these operations the system of rules is rather adequate except of one de-
tail. It contains ambiguous rules. We call rules r1 and r2 ambiguous if r1() = r2(), 
r1() ≠ r2() and r1(pl) = r1(pr) = r2(pl) = r2(pr) = Æ. Such cases can be sometimes 
explained with ambiguities of reading rules of the source language, but we should try 
to resolve them with the help of contexts. Up to now all the rules in our set had empty 
contexts (“rÎR: r(pl) = r(pr) = Æ). As all of our rules contain reference to words where 
they meet we can add contexts. Contexts are letters which precede (pl, left context) 
and follow (pr, right context) substring r() in words where it is met. This approach 
is useful in many cases (see example 2).

Example 2
After employing contexts we receive from two ambiguous rules c  с and c 

к (French-Russian dataset) two rules:
{< a e i}c{a o}  к
{< a e i u y}c{e i}  с,
that illustrate one of French reading rules: c is read as [s] (“с” in Russian) before 

front vowels (e, i).

5.2. Complicated rules

After the fi rst stage of the algorithm we achieve a system of rules that can already 
be used for strings conversion. If reading rules of source language are plain enough, 
system of initial rules can transform strings correctly. But in many cases initial rules 
are not suffi cient.

The second step of the algorithm aims to discover rules that can’t be discovered 
at the fi rst step.

The second step of the algorithm consists of several minor steps:

1. Divide names into syllables
2. Try to transform syllables according to the existing rules, generate new rules
3. Go to step 2

We divide all the names and their translations into syllables. Then we try to convert 
every syllable from source language to target language. If the conversion was failed, that 
means that the translation of the syllable can’t be explained with the existing system 
of rules. In this case we add a new rule that can explain current syllable. Then, if there 
are any unexplained syllables left, we repeat step 2 until all of them are explained.

5.2.1. Syllabifi cation
Term “syllable” in the present work is used not in traditional linguistic meaning.
Syllable is nonempty substring of a given word containing one or more vowels. 

We use the following rules of syllabifi cation:
• Bound of a syllable in the word w = l1l2…ln is between a vowel and a consonant, 

i.e. after letter li such that isVowel(li) = true and isVowel(li+1) = false;
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• Set of elements none of which is vowel isn’t separated out, including consonants 
at the end of word;

• Symbols “<” and “>” marking the beginning and the end of word are considered 
consonants.

Thereby a syllable is a chain C*V+ where C is a consonant and V is vowel. Syllable 
can have form C*V+C+ only if it is a last syllable of a word and fi nal set of consonants 
can’t be separated because there is no vowels among them.

Let we defi ne substitution as pair of strings i  i, where i = <u1, …, un> 
is an i-th syllable of original word and i = <v1, …, vm> is an i-th syllable of translated 
word.

Actually syllable is a combination of consonant group and vowel group, that were 
described in section 4.1.

5.2.2. Trial transformation
We divide words into syllables, because syllables are shorter and in a syllable it’s eas-

ier to discover a substring that can’t be processed with the existing rules, than in a word.
We try to apply existing system of rules to every syllable  of original word. If we get 

syllable  which is right part of substitution , we move to the next syllable. Otherwise 
we should generate a new rule as any subset of existing rules doesn’t give us proper result.

Applying rules to the substitution  from left to right and from right to left 
we can represent the substitution as <u1, …, uk, , uk+1, …, un>  <v1, …, vq, μ, vq+1, …, 
vm>, where <u1, …, uk>  <v1, …, vq> and <uk+1, …, un>  <vq+1, …, vm>. So we have 
three different situation depending on  and :

•  = Æ, μ ≠ Æ. We add a new rule ri such that ri(pl) = uk-1, ri() = uk, 
ri(pr) = uk+1, ri() = vq + μ. — in other words, rule for symbol that precedes . In some 
contexts it is substituted with two or more symbols.

•  ≠ Æ, μ = Æ. This situation means that some of letters of VI in some contexts 
are not read. We add a rule ri such that ri(pl) = uk, ri() = , ri(pr) = uk+1, ri() = Æ.

•  ≠ Æ, μ ≠ Æ. We add ri such that ri(pl) = ri(pr) = Æ, ri() = , ri() = μ. 
If ri confl icts with any of exiting rules we add context to ri.

6. Experiments

6.1. Generated rules

We evaluated our method of rules generation on parallel collections of names 
in French, German, Spanish, Swedish, Mongolian, Arabic and Japanese. Target lan-
guage of all test collections is Russian. Collections contain proper names from various 
sources. They were transcribed into Russian manually by an expert. We didn’t esti-
mate fullness of collections.

We received rules of transliteration from every of listed languages into Russian. 
Table 1 summarizes information about size of test collections and number of gener-
ated rules.
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Table 1. Results comparison

Language Size of collection
Number of rules 

generated with our tool
Number of rules 

written by expert

Arabic 1 900 63 78
French 1 900 160 356
German 4 200 102 121
Japanese 7 000 52 131
Mongolian 230 41 46
Spanish 1 000 88 106
Swedish 1 900 105 423

Systems of rules that were generated by our system contain fewer rules than 
systems written by experts. This fact can be explained in two ways. First of all, 
although experts relied on test collections while writing rules, they often followed 
their own knowledge of source language and added rules that could not have been 
deduced from test examples. Thus expert added rule “{<}ai  э” (“ai” in the begin-
ning of the word should be transliterated as “э”) in French-Russian rule system, 
despite the absence of suitable examples in the collection. Some of such rules were 
generated by our tool, but then excluded as rare and insignifi cant. And some others 
were just not generated. For example, expert added rules “aa  а” and “ya  я” 
for Arabic as well as machine did, but rule “yaa  я” exists only in human-written 
rules set. Expert’s set of rules for Japanese-Russian transliteration contains rules 
for syllables “ha”, “sha” and “cha”, transcribed as “ха”, “ся” and “тя”, respectively. 
However, algorithm considers only one-symbol contexts, so it generated rule “a  
я” with left context “h”.

Secondly, rules that were generated by computer are compressed in comparison 
with expert’s rules. For example, expert’s variant of French-Russian rules contains 
a set of rules for substring “ai”, while computer generated only one rule “ai  е”, that 
covers all expert’s transliterations (except of above-mentioned case of “ai” in the be-
ginning of the word). Rules of Japanese syllabary transliteration were reduced in rules 
for particular substrings. Thus instead of three rules for syllables that start with “ch” 
machine generated one rule “ch  т”. We should admit that this approach is more 
proper, but linguists are not used to such notation.

Aside from mentioned drawbacks the rules are consistent, cover major part 
of test collection and can be used for transliteration of proper names.

6.2. Finite State Automaton

Rules generated by our system were also used to construct fi nite-state trans-
ducer. We have checked quality of learning of our method. Finite state machine has 
transduced names from the training set. The method has shown rather good results 
(see Table 2), low values at the bottom of the table can be explained with inconsisten-
cies or mistakes in training set.
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Although the method already applicable to practical tasks, it can be still improved 
with statistics and more full usage of contexts, so results in Table 2 are not ultimate.

Table 2. Quality of learning

Language Size of collection Quality of learning

French 580 97 %
Mongolian 232 98 %
Tagalog 286 93 %
Arabic 1 606 87 %
Spanish 1 041 86 %
Polish 1 413 79 %
Romanian 576 78 %
Swedish 1 629 74 %
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