
508

МЕТОД ПОРОЖДЕНИЯ ПРАВИЛ

МЕЖЪЯЗЫКОВОЙ МАШИННОЙ

ТРАСКРИПЦИИ

В. К. Логачева (logacheva_vk@mail.ru)

Е. С. Клышинский (klyshinsky@mail.ru)

Институт Прикладной Математики РАН, Москва, Россия

В статье рассматривается метод генерации правил машинной
транскрипции. Метод пригоден для применения к языкам различных
групп. Генерация правил проводится на основе анализа коллекции
имен собственных, в которой представлено написание как на языке
оригинала, так и на выходном языке. Работа поддержана грантом
РФФИ № 10-01-00800.

Ключевые слова: машинная транскрипция, правила машинной
траскрипции, генерация правил, имена собственные.

NON-STOCHASTIC LEARNING
OF CROSS-LANGUAGE TRANSLITERATION
RULES FROM A SMALL DATASET

 V. K. Logacheva (logacheva_vk@mail.ru)

 E. S. Klyshinskii (klyshinsky@mail.ru)

Keldysh IAM Russian Academy of Sciences, Moscow, Russia

We present a language-independent method of generating rules for ma-
chine transliteration. The generation of rules is based on the analysis
of a test dataset, which contains names written in the source language and
their transliterations into the target language.

Key words: transliteration rules, machine transliteration rules, rules gen-
eration, proper nouns.

Non-stochastic learning of cross-language transliteration rules from a small dataset

 509

1. Introduction

Proper names cross-language transcription is an essential problem in many
spheres — from linguistic topics, like machine translation or information re-
trieval, to some purely practical ones — for example, when translating documents
or maps.

There are several ways to reproduce names with the means of other language:

• Translation (for example, Easter Island — остров Пасхи). Interpreters rarely
use this way. Translation is impossible in many cases as proper names usually
don’t have any lexical meaning.

• Transliteration:
• Strict transliteration — every letter of alphabet of the source language is as-

sociated with a letter in target language. This way of transfer can misrepre-
sent phonetic appearance of the word as almost every language has di- or tri-
graphs — that is set combinations of letters that should be read in a specifi c
way. Even rules of extended transliteration (rules that allow to transform
one letter of source alphabet to two or more letters of target alphabet) are
not always suffi cient to defi ne all relations between phonetics and graphics.

• Transliteration with regard for phonetic appearance of the word. This
method is usually called practical transcription.

At different times different approaches to translation of names entities were pop-
ular among translators, but since the middle of 20th century most of translators agree
that name should keep its sounding. Progress in computational linguistics has raised
a question of automatic transcription of proper names.

Currently there already exist a lot of various methods of cross-language trans-
literation. They are based on different approaches and use different techniques: sto-
chastic state-fi nite automata, Viterbi decoding algorithm, learning of statistic ma-
chine translation systems. Vast majority of existing methods are based on statistics.
This approach is often effective because it doesn’t need to involve specifi c linguistic
information. But its simplicity is paid with necessity in huge amounts of learning
data, which is often inaccessible. While other groups of researches develop meth-
ods of automatic data retrieval or generate cross-language phoneme or letter map-
pings using monolingual corpora, we tried to work out a “clever” method of rules
generation.

Our work is based on the system “Transscriba” [11]. This is a rule-based system,
that means that transliteration model is a set of rules, constructed manually by ex-
pert. Such approach provides very high accuracy of transliteration, but it takes from
two weeks to six months of an expert’s work to construct a system of rules for one pair
of languages. Moreover, “Transscriba” has one more drawback. Its method of strings
transformation is ineffective as speed of parsing depends on amount of rules in the
system. In Section 4 we demonstrate effective method of strings processing with gen-
erated rules. Section 5 introduces the method of automatic learning of cross-language
transcription rules from small training set.

E. S. Klyshinskii,

510

2. Related works

First attempts to work out system of rules of transliteration relate to pre-com-
puter epoch. There are plenty of works that should rather be treated as recommenda-
tions for translator than a code of laws, but these recommendations have later become
basis of formal rules used in machine transliteration systems [9, 10].

As for machine transliteration itself, one of the fi rst works that had determined
direction of many researches in this area is work [3]. It describes transliteration and
back-transliteration between English and Japanese languages. The model is trained
with modifi ed Viterbi algorithm. Transliteration is accomplished by a chain of statisti-
cal fi nite-state transducers. Output of every automaton is an input of the next one.

Later this method was adapted for the Arabic language [1]. However, fundamen-
tal principle of those works was recognition of separate characters and their groups.
It didn’t allow to raise quality of transliteration. So researches started working with
chained substrings [5]. Such replacement allowed to improve transliteration accuracy
from 30 % to 90 %.

The above mentioned chain of fi nite-state automata served as a basis for many
other methods. Jonathan Grael has developed an instrument that constructs a chain
of automata that can be trained on user’s data. This tool was widely used in many
works on machine transliteration [2].

Another popular method is learning of cross-language mappings using phrase-
based machine translation systems. While during translation minimal unit is a word
and sentences are regarded as word successions, during transliteration minimal unit
is a letter and main analyzed unit is a word.

There are a lot of techniques of machine transliteration. As we can’t specify all
of them in this paper, we will name main parameters in which different methods vary:

• Letter / phoneme substitution — some methods work with letters and sub-
strings [5] and others transform letters in phonetic notation and look for pho-
neme cross-language mappings [3]

• Statistical / rule-based models — cross-language mappings can be acquired
with statistic analysis of test data or using some heuristic model

• Manual / automatic generation of learning data — for statistic-based mod-
els size and quality of test data is very important. Some researches are satisfi ed
with manually-constructed sets, others use multilingual dictionaries of names
and terms [3, 5, 7], acquire parallel examples from bilingual corpora [6], or even
learn on unilingual data [4].

3. Preliminaries

We will speak about transduction of word from one language to another. So our
method deals with pairs of languages, one of which is a source language (language
of original) and another is a target language (language of translation). Let we denote
alphabet of source language as VI, and alphabet of target language as VO.

Non-stochastic learning of cross-language transliteration rules from a small dataset

 511

Let we denote letters of VO and VI with letters of Latin alphabet, strings of letters
from VI and VO are denoted with letters of Greek alphabet. Letters i, j, m and n are
reserved for enumerations.

The aim of present research is to work out a method that allows to generate cross-lan-
guage letter mappings: in other words, to determine substitutions for letters or substrings
of source language among letters or substrings of target language. Let we defi ne rules
of transliteration from source language into target language as these letter mappings.

In our implementation rule is a pair r = <p, >, where:
p = <pl, , pr>, where pl and pr are pre-condition and post-condition, α is a trans-

duced string, pl = {1, 2, …, n }, γiVI
+, pr = {1, 2, …, m }, iVI

+,
β — output string. String that substitutes for string α in target language.
Consequently the rule is applicable to the current position means that symbols

from α are following from the current position, α is preceded by a substring that has
symbols from pl on appropriate positions and followed by a substring that has symbols
from pr on appropriate positions.

We sequentially look for rules that can be applied to the input string. If we fi nd
one, we move the current position by || symbols from current position and return .

We learn rules of transliteration from a manually-constructed learning set, which
consists of proper names in source language and their transliterations into target language.

During the process of rules generation we need some more information about
the rule: how many times and in which situations it was applied. So when learning
we use full rule format, that is represented as a triplet r = <p, , w>, where p and
 are the same as in format listed above and w = {<w1, pos1>, … , <wn, posn>}, where
wi is a word from the learning set that satisfi es the rule r, posi is a number that indi-
cates position of the fi rst symbol from  in wi.

4. Method of string transformation

We needed a method of strings processing which is linear with respect to length
of string and doesn’t depend on amount of rules in the system.

We have decided to transform strings with state fi nite machine as it provides
linear speed of parsing. We use an extended fi nite state transducer of the following
structure: g = <VI, VO, Q, q0, F, >

VI — input alphabet (source alphabet);
VO — output alphabet (target alphabet) ;
Q — automaton’s states set;
q0 — initial state;
F — fi nal states set;
 — next-state function QVI  <Q, a>. It defi nes state we should move from the

current state if we receive a certain input symbol, aA is a set of actions committed
during transition to the new state. A = {Out(), Shift()}:

Out() — function returning a substring  (can be empty) from the target alphabet.
Shift(n) — procedure that skips n symbols of the processed string. The default

value of n is 1, that means that during a transition automaton moves to the next symbol.

E. S. Klyshinskii,

512

Every fi nal state has a transition to the initial state by the empty symbol.
The automaton is constructed from a set of rules (see section 3). Rules are se-

quentially added to the automaton. We start adding every rule from the initial state
of the automaton.

If rule doesn’t have context, that is r(pl) = r(pr) = , we use the following algo-
rithm of transformation.

Algorithm 1. Transformation of rule without context.

1. Add new state and move from the initial state to the new state by the fi rst
symbol from 

2. Move from current state ni to state ni+1 by every following symbol of  (state
ni+1 is newly constructed)

3. State nz which we have come by the last symbol of  becomes a fi nal state
4. Add action Out() to the transition to the fi nal state nz. In other words, if we meet

substring  in a processed string, we add its transliteration () to the output string.

Note that value of function Shift() for every constructed transition is 1.
If rule has contexts, the procedure of its transformation is a little different.
Algorithm 2. Transformation of rule with context.

1. Add new state and move from the initial state to the new state by the fi rst
symbol from  and set Shift() = ||  (-1), γ  r(pl) — after checking the fi rst
symbol we return back to check context;

2. Commit step 2 of Algorithm1 for every γi  r(pl),
3. Commit step 2 of Algorithm1 for α
4. Commit steps 2–4 of Algorithm1 for every δi  r(pr) BUT set meaning

of Shift() for the last transition to |δ-1|  (-1), δ  r(pr) — after checking the
rule and its post-context we return back to parse context separately.

Note that transformation demands that all γ  r(pl) have the same length and all
δ  r(pr) have the same length, yet there is no request to |γ| and |δ| to be equal. More-
over, presence of one of contexts doesn’t mean presence of the other.

Automaton constructed from system of rules using Algorithms 1 and 2 can turn
out to be nondeterministic if there is a pair of rules r1 and r2 such that r1(α) = <u1, u2,
…, un>, r2(α) = <v1, v2, …, vm> and u1 = v1. Of course one can process strings with
nondeterministic automaton, but in this case it loses its advantage of speed. To keep
this advantage we use standard procedure of determinization of state automaton [8].

5. Method of rules generation

Algorithm of rules generation can be divided into two main steps:
1. generation of initial rules;
2. generation of complicated rules.

Non-stochastic learning of cross-language transliteration rules from a small dataset

 513

5.1. Initial rules

We call “initial rules” all the rules that can be discovered through rather simple
operations. Even so rules themselves can be nontrivial.

The core of rules generation process is association of substrings of original
names with corresponding substrings of their translations. In other methods this pro-
cess is purely statistical, but we use other approach.

Ideally name and its translation should consist of the same phoneme succession
to be recognizable. For the initial stage of algorithm let we assume that in every lan-
guage consonant phoneme is written down with one or more consonant letters and
vowel phoneme — with vowel letters. From this assumption we deduce that conso-
nant letters usually transform to consonant letters and vowels — to vowels.

In compliance with our hypothesis we divide each word (both original and transla-
tion) into groups of consonants and vowels. Let us defi ne predicate isVowel(l), which
returns true if l is vowel and false otherwise for every l  VI  VO. For every word w =
l1l2…ln bound of group is placed between all such li and li+1 that isVowel(li) ≠ isVowel(li+1).

So each name can be represented as a pair w = <in, out>, where:
in = <in1, in2, … , inn> — set of nonempty chains of letters from VI

out = <o1, o2, …, om> — set of nonempty chains of letters from VO

Then for every word w from learning set, where |in| = |out|, we form n rules
where n = |in| = |out|

ri(pl) = ri(pr) = , ri() = ini, ri() = oi.
In other words, we just match i-th group of original name with the i-th group

of translated name, provided that name and translation have equal number of groups
and i-th group of original have the same type (consonant or vowel) as i-th group
of translation (see ex. 1). These mappings form the set of rules-candidates R.

Example 1
R | u | gg | ie | r | o M | a | cch | i
R | u | dzh | e | r | o M | a | kk | i
r  r, u  u, gg  dzh, ie  e, o  o, m  m, a  a, cch  kk, i  i

Example of generation of initial rules from names (Italian-English dataset).
Vertical lines denote bounds of groups. Corresponding groups of original names and
translations are united into rules

After having generated set of rules-candidates we reduce it. We remove rare
rules: rules that occur in our set only once or twice. We consider them to be arbitrary
letter combinations. Then we remove too big rules — rules whose left side is longer
than 3 symbols. We suppose that it can be later explained with several shorter rules.
Of course, this solution isn’t always correct as one sound may be written down by four
or more letters. So we don’t remove rule with left side longer than 3 letters if its right
side consists of only one letter.

We also remove rules that can be explained with shorter rules. Formally speak-
ing, if for rule r0 = <p, > exist r1, …, rnR such that r0() = r1() + r2() + … + rn()
and r0() = r1() + r2() + … + rn(), then r0 should be removed.

E. S. Klyshinskii,

514

After these operations the system of rules is rather adequate except of one de-
tail. It contains ambiguous rules. We call rules r1 and r2 ambiguous if r1() = r2(),
r1() ≠ r2() and r1(pl) = r1(pr) = r2(pl) = r2(pr) = Æ. Such cases can be sometimes
explained with ambiguities of reading rules of the source language, but we should try
to resolve them with the help of contexts. Up to now all the rules in our set had empty
contexts (“rÎR: r(pl) = r(pr) = Æ). As all of our rules contain reference to words where
they meet we can add contexts. Contexts are letters which precede (pl, left context)
and follow (pr, right context) substring r() in words where it is met. This approach
is useful in many cases (see example 2).

Example 2
After employing contexts we receive from two ambiguous rules c  с and c 

к (French-Russian dataset) two rules:
{< a e i}c{a o}  к
{< a e i u y}c{e i}  с,
that illustrate one of French reading rules: c is read as [s] (“с” in Russian) before

front vowels (e, i).

5.2. Complicated rules

After the fi rst stage of the algorithm we achieve a system of rules that can already
be used for strings conversion. If reading rules of source language are plain enough,
system of initial rules can transform strings correctly. But in many cases initial rules
are not suffi cient.

The second step of the algorithm aims to discover rules that can’t be discovered
at the fi rst step.

The second step of the algorithm consists of several minor steps:

1. Divide names into syllables
2. Try to transform syllables according to the existing rules, generate new rules
3. Go to step 2

We divide all the names and their translations into syllables. Then we try to convert
every syllable from source language to target language. If the conversion was failed, that
means that the translation of the syllable can’t be explained with the existing system
of rules. In this case we add a new rule that can explain current syllable. Then, if there
are any unexplained syllables left, we repeat step 2 until all of them are explained.

5.2.1. Syllabifi cation
Term “syllable” in the present work is used not in traditional linguistic meaning.
Syllable is nonempty substring of a given word containing one or more vowels.

We use the following rules of syllabifi cation:
• Bound of a syllable in the word w = l1l2…ln is between a vowel and a consonant,

i.e. after letter li such that isVowel(li) = true and isVowel(li+1) = false;

Non-stochastic learning of cross-language transliteration rules from a small dataset

 515

• Set of elements none of which is vowel isn’t separated out, including consonants
at the end of word;

• Symbols “<” and “>” marking the beginning and the end of word are considered
consonants.

Thereby a syllable is a chain C*V+ where C is a consonant and V is vowel. Syllable
can have form C*V+C+ only if it is a last syllable of a word and fi nal set of consonants
can’t be separated because there is no vowels among them.

Let we defi ne substitution as pair of strings i  i, where i = <u1, …, un>
is an i-th syllable of original word and i = <v1, …, vm> is an i-th syllable of translated
word.

Actually syllable is a combination of consonant group and vowel group, that were
described in section 4.1.

5.2.2. Trial transformation
We divide words into syllables, because syllables are shorter and in a syllable it’s eas-

ier to discover a substring that can’t be processed with the existing rules, than in a word.
We try to apply existing system of rules to every syllable  of original word. If we get

syllable  which is right part of substitution , we move to the next syllable. Otherwise
we should generate a new rule as any subset of existing rules doesn’t give us proper result.

Applying rules to the substitution  from left to right and from right to left
we can represent the substitution as <u1, …, uk, , uk+1, …, un>  <v1, …, vq, μ, vq+1, …,
vm>, where <u1, …, uk>  <v1, …, vq> and <uk+1, …, un>  <vq+1, …, vm>. So we have
three different situation depending on  and :

•  = Æ, μ ≠ Æ. We add a new rule ri such that ri(pl) = uk-1, ri() = uk,
ri(pr) = uk+1, ri() = vq + μ. — in other words, rule for symbol that precedes . In some
contexts it is substituted with two or more symbols.

•  ≠ Æ, μ = Æ. This situation means that some of letters of VI in some contexts
are not read. We add a rule ri such that ri(pl) = uk, ri() = , ri(pr) = uk+1, ri() = Æ.

•  ≠ Æ, μ ≠ Æ. We add ri such that ri(pl) = ri(pr) = Æ, ri() = , ri() = μ.
If ri confl icts with any of exiting rules we add context to ri.

6. Experiments

6.1. Generated rules

We evaluated our method of rules generation on parallel collections of names
in French, German, Spanish, Swedish, Mongolian, Arabic and Japanese. Target lan-
guage of all test collections is Russian. Collections contain proper names from various
sources. They were transcribed into Russian manually by an expert. We didn’t esti-
mate fullness of collections.

We received rules of transliteration from every of listed languages into Russian.
Table 1 summarizes information about size of test collections and number of gener-
ated rules.

E. S. Klyshinskii,

516

Table 1. Results comparison

Language Size of collection
Number of rules

generated with our tool
Number of rules

written by expert

Arabic 1 900 63 78
French 1 900 160 356
German 4 200 102 121
Japanese 7 000 52 131
Mongolian 230 41 46
Spanish 1 000 88 106
Swedish 1 900 105 423

Systems of rules that were generated by our system contain fewer rules than
systems written by experts. This fact can be explained in two ways. First of all,
although experts relied on test collections while writing rules, they often followed
their own knowledge of source language and added rules that could not have been
deduced from test examples. Thus expert added rule “{<}ai  э” (“ai” in the begin-
ning of the word should be transliterated as “э”) in French-Russian rule system,
despite the absence of suitable examples in the collection. Some of such rules were
generated by our tool, but then excluded as rare and insignifi cant. And some others
were just not generated. For example, expert added rules “aa  а” and “ya  я”
for Arabic as well as machine did, but rule “yaa  я” exists only in human-written
rules set. Expert’s set of rules for Japanese-Russian transliteration contains rules
for syllables “ha”, “sha” and “cha”, transcribed as “ха”, “ся” and “тя”, respectively.
However, algorithm considers only one-symbol contexts, so it generated rule “a 
я” with left context “h”.

Secondly, rules that were generated by computer are compressed in comparison
with expert’s rules. For example, expert’s variant of French-Russian rules contains
a set of rules for substring “ai”, while computer generated only one rule “ai  е”, that
covers all expert’s transliterations (except of above-mentioned case of “ai” in the be-
ginning of the word). Rules of Japanese syllabary transliteration were reduced in rules
for particular substrings. Thus instead of three rules for syllables that start with “ch”
machine generated one rule “ch  т”. We should admit that this approach is more
proper, but linguists are not used to such notation.

Aside from mentioned drawbacks the rules are consistent, cover major part
of test collection and can be used for transliteration of proper names.

6.2. Finite State Automaton

Rules generated by our system were also used to construct fi nite-state trans-
ducer. We have checked quality of learning of our method. Finite state machine has
transduced names from the training set. The method has shown rather good results
(see Table 2), low values at the bottom of the table can be explained with inconsisten-
cies or mistakes in training set.

Non-stochastic learning of cross-language transliteration rules from a small dataset

 517

Although the method already applicable to practical tasks, it can be still improved
with statistics and more full usage of contexts, so results in Table 2 are not ultimate.

Table 2. Quality of learning

Language Size of collection Quality of learning

French 580 97 %
Mongolian 232 98 %
Tagalog 286 93 %
Arabic 1 606 87 %
Spanish 1 041 86 %
Polish 1 413 79 %
Romanian 576 78 %
Swedish 1 629 74 %

References

1. Akho A. V., Lam M. S., Seti R., Ul’man D. D. 2008. Compilators. Priciples, Technol-
ogies and Instruments [Kompiliatory. Printsipy, Tekhnologii I Instrumentarii].

2. Al-Onaizan Y., Knight K. 2002. Machine Transliteration of Names in Arabic Text.
Proceedings of the ACL Workshop on Computational Approaches to Semitic
Languages.

3. Ermolovich D. I. 2005. Proper Names: Theory and Practice of Interlanguage Trans-
mission [Imena Sobstvennye: Teoriia I Praktika Mezh’’iazykovoi Peredachi].

4. Giliarevskii R. S., Starostin B. A. 1985. Foreign Names in Russian Text [Inostran-
nye Imena I Nazvaniia v Russkom Tekste].

5. Graehl J. 1997. Carmel Finite-state Toolkit, available at: http://www.isi.edu/
licensed-sw/carmel

6. Knight K., Graehl J. 1998. Machine Transliteration. Computational Linguistics,
24(4) : 599–612.

7. Practical transcription of Proper Names in the Languages of the World [Prak-
ticheskaia Transkriptsiia Lichnykh Imen v Iazykakh Narodov Mira]. 2010.

8. Ravi S., Knight K. 2009. Learning Phoneme Mappings for Transliteration without
Parallel Data. Human Language Technology Conference archive Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics.

9. Sherif T., Kondrak G. 2007. Substring-Based Transliteration. Proceedings of the
ACL Workshop on Computational Approaches to Semitic Languages.

10. Sproat R., Tao T., Zhai C. 2006. Named Entity Transliteration with Comparable
Corpora. Proc. of ACL.

11. Zelenko D., Aone C. 2006. Discriminative Methods for Transliteration. Proc.
of EMNLP.

