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Many tasks in natural language processing, such as machine translation, 
word sense disambiguation, word translation disambiguation, require 
analysis of contextual information. In case of supervised approaches this 
analysis is performed by human experts, which is very costly. Unsuper-
vised approaches offer fully automatic methods to fulfill these tasks. Yet 
these methods are not robust, their results are very parameter-dependent 
and difficult to interpret. Context clustering is an unsupervised technique 
for analysis of context similarities. In this work we explore dependencies 
of context clustering results from various clustering parameters. We also 
explore suitability of the context clustering for word translation disambigu-
ation by evaluating the clustering results against known classes that are 
classes of translation candidates.
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1.	 Introduction

In natural language processing word sense disambiguation is the task of auto-
matic assignment of a correct sense from a predetermined sense inventory to a poly-
semous word. It is tightly related to the task of machine translation, where a correct 
translation of a word or phrase must be chosen from a list of translation candidates. 
Recently, the task of selection of the best translation or several interchangeable (syn-
onymous) translations for a given source word in context and a set of target candi-
dates has become known as word translation disambiguation.

All these tasks require contextual information to resolve an ambiguity, albeit 
translational or semantic.

In natural language processing approaches that involve a manually tagged 
training corpus that is further used for training of a machine-learning algorithm are 
known as supervised methods. Methods that automatically learn from “raw” cor-
pus are called unsupervised. There are also approaches that are based on manually 
crafted rules or use existing dictionaries or heuristics that are known according to [1] 
can be described as knowledge-based approaches.

In the past decade approaches to bootstrap machine translation with prelimi-
nary word sense disambiguation or word sense translation were explored in [23, 2–5]. 
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These approaches are based on supervised WSD classifiers that require extensive 
training on a large manually tagged training corpus. They are resource-demanding 
and provide relatively little or no improvement at a high cost.

The task of word translation disambiguation was treated independently in [8, 
12] either with a supervised classifier or with huge annotated monolingual corpora.

As it was noted in various reviews [1, 13], supervised methods have achieved 
substantial results but they require very costly training corpora, which are normally 
tagged by human experts. The training corpora have become a bottleneck of this ap-
proach and since its results anyway do not reach a human-made gold standard [7], 
ultimately the attention of researches has been driven to unsupervised methods.

There are two main directions in unsupervised methods: methods that use 
monolingual corpora and look for similarities in contexts or documents, as in con-
text or document clustering, and methods that extract information from word aligned 
multilingual corpora also known as cross-lingual methods.

Context clustering is an unsupervised approach to detection of similarities 
in contexts [16, 20]. Its results highly depend on parameters used for clustering. This 
approach was applied to word sense discrimination [19], which is mere distinguishing 
between different senses.

Diab and Resnik [6] use cross-lingual approach for unsupervised word sense tag-
ging. The authors use a word-aligned French-English parallel corpus with a tagged 
part in English to tag its French part with corresponding senses. This approach 
is aimed to facilitate sense-tagging of other languages given a broadly sense-tagged 
corpus in English. Consequently, although the suggested method is unsupervised, 
it requires substantially tagged data.

As follows from the above, the suitability of unsupervised approaches to word 
translation has not been explored. Our hypothesis is that unsupervised context clus-
tering along with word aligned parallel texts can serve for obtaining context char-
acteristics that would allow correct selection of a translation candidate for a word 
in a context in unsupervised manner. In this work we explore the suitability of con-
text clustering for word translation disambiguation by comparing clustering results 
for various parameter combinations and evaluating them against known translation 
classes. In particular, we explore several parameter combinations with values that 
were found to be the best for the tasks of document and context clustering in [21, 24, 
19, 11, 15]. For evaluation of clustering results we use translation equivalents that 
were obtained from word aligned parallel corpus.

The paper is organized as follows. In Section 2 we give a short overview of the 
parameters involved in context clustering. Section 3 describes experimental settings 
including context clustering software, dataset and the procedure for detection of da-
taset classes used for evaluation and interpretation. In Section 4 we demonstrate the 
obtained results and perform their analysis. Section 5 provides conclusion remarks 
and outlines future work in this direction.
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2.	 Context Clustering

In the past decade the topic of unsupervised word sense discrimination, that 
is discrimination between different word usages in context, was actively investigated 
[1, 13]. The most known solution to this problem is clustering of contexts that contain 
a word in question, which is a particular application of document clustering [16, 20]. 
An extensive review of clustering as unsupervised classification of dataset elements 
into groups is provided in [9]. The clustering algorithms that are suitable for docu-
ment clustering are described and analyzed in [21] and implemented first in CLUTO 
clustering toolkit [10], which receives an extension in SenseClusters clustering tool 
[18]. We adopted the latter as a tool for our experiments.

However, results of context clustering highly depend on a variety of parameters: 
clustering algorithms, criterion functions for cluster detection, context representa-
tions, context similarity measures, and cluster stopping criteria. Here we give a brief 
overview of clustering parameters and techniques.

2.1.	Features

To perform a clustering one has to choose features that would represent each 
element of a dataset. In the field of document and context clustering each element, 
i. e. a document or a context, can be represented as a vector in a feature space. For 
example, a document can be represented as a vector of term frequencies:

	 dtf=(tf1, tf2, …, tfn),

where tfi is the frequency of a particular term i in a document and n is the number 
of all terms from the entire document set.

Features are called unigrams, when only one-word terms are considered. Uni-
grams are considered to be quite a simple model that gives no information on possible 
word collocations. Nevertheless, they are proved to be useful for measuring first-order 
similarity (see Section 2.2) for short context with regular vocabulary, e. g. weather 
forecasts [15]. Moreover, they can be used for second-order similarity measurement 
(see Section 2.2) using Latent Semantic Analysis (LSA) representation. Pairs of two 
consecutive words are called bigrams. They are used in second-order similarity mea-
surement, which proved to be more appropriate for short contexts that do not share 
many common words [2]. In this work we adopt the extension of bigram’s definition 
that is introduced in [17] and is implemented in SenseClusters [18]. The extended 
definition states that bigrams are pairs of words that occur in a given order within 
some distance from each other. The distance is called window. For example, for a win-
dow of size five there could be at most three intervening words between the first and 
the second word that make up a bigram. The small window value represent narrow 
context in modeling, which for short context may result in lower similarity. However, 
larger windows might involve unrelated words that are never seen in collocations with 
smaller windows. Normally, the window is set between 2 and 10. In contrast to the 
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bigrams, unordered pairs of words within a given window are called co-occurrences. 
For contexts that contain a marked word as in the case of word sense discrimination, 
target co-occurrences are introduced. Target co-occurrences are co-occurrences that 
include the marked word. Such words as auxiliary verbs, articles, conjunctions, etc., 
that are common for any context and, therefore, do not bring in any characteristic 
information are known as stopwords and are not considered in features.

Moreover, words that occur fewer times than a threshold ( frequency-cut param-
eter) r cannot serve as a solid basis for context grouping and, hence, must be excluded 
from the feature list as well. The typical value of the frequency-cut parameter r is be-
tween 3 and 5.

2.2.	Order of context representation

The first-order representation represents a context as a vector only of those fea-
tures that are directly present in the context. The second-order representation also 
considers features that co-occur with the initial context features in other context. For 
example, if we have context 1 “computer mouse” and context 2 “wireless mouse” with 
bigram features, they will not have any common features for the first-order repre-
sentation. Yet, for the second-order representation, at the training phase of feature 
gathering, the contexts may serve for mutual extension of features, “wireless mouse” 
being a second-order feature for context 1 and “computer mouse” being a second-
order feature for context 2. Pedersen [15] shows the second-order representation 
to be better for short contexts since they contain fewer words than a document. Both 
representations are implemented in SenseClusters toolkit.

2.3.	Similarity measure

To evaluate similarity between contexts, a similarity measure must be intro-
duced on the selected feature representation. If elements are represented as feature 
vectors, such similarity measures as distance or cosine can be used. Hence, contexts 
can be either represented in a vector space, where a vector corresponds to each docu-
ment, or a similarity matrix can be constructed based on pairwise similarities be-
tween contexts.

2.4.	Clustering criterion functions

The task of clustering is optimization of a clustering criterion function, which 
is a function from similarity measure. A review and comparison of criterion functions 
for partitional clustering is presented in [24]. The authors evaluate the performance 
of eight different criterion functions for the problem of document clustering. Internal 
criterion functions I1, I2, and I3 are based on the intra-cluster (dis)similarity, while ex-
ternal criterion functions E1 and E2 consider inter-cluster distances or (dis)similarities. 
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Hybrid criterion functions H1 and H2 combine the properties of internal and external 
criterion functions. All these functions view a document as a feature vector. Graph 
based criterion functions G1 and G2 are based on graph representation of a document. 
The authors show that two of the compared criterion functions (I2 and H2) steadily 
provide good results with most of the clustering algorithms.

2.5.	Clustering techniques

A variety of clustering techniques and algorithms exists to determine the se-
quence of steps for grouping and further regrouping of elements. This variety can 
be classified into three groups: hierarchical clustering, partitional clustering, and 
hybrid. A detailed description of these techniques and comparison of their applica-
tion for document clustering can be found in Steinbach et al. [21]. As it follows from 
their research, the best clustering techniques for document clustering were bisecting 
k-means among partitional clustering techniques and refined agglomerative cluster-
ing with UPGMA (Unweighted Pair-Group Method with Arithmetic Mean) among hi-
erarchical techniques. They also showed that bisecting k-means technique performed 
better than refined agglomerative clustering with UPGMA.

2.6.	Cluster stopping criteria

However, the existing clustering techniques imply that a number of clusters 
is known in advance, which is not true in many cases, especially for context cluster-
ing and word sense discrimination. When we do not know a desired number of clus-
ters, automatic cluster stopping criteria were suggested in [11]: gap, which is based 
on gap statistics applied to within-cluster dispersion, pk1, pk2, and pk3 (“pk’’ stands 
for “Predicting the number of clusters K”), which consider significance of the change 
of a cluster similarity function between sequential number of clusters. In this work 
we use cluster stopping criteria to automatically detect the number of word senses 
of an investigated word based on the idea of unsupervised word sense discrimination 
that holds that similar senses are accompanied by similar contexts. We then compare 
the resulting number of clusters to the number of senses provided by dictionaries, 
by these means detecting the most appropriate cluster stopping criteria.

2.7.	 Clustering evaluation

There are many different quality measures for evaluation of clustering results. 
Ranking of clustering algorithm performance depends substantially on what measure 
is used [21].

There are two basic approaches to clustering evaluation: internal and external. 
Although the classification might coincide with cluster criterion functions, clustering 
evaluation measures take different perspective on clusters. Internal clustering quality 
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measures do not use any external knowledge about possible groupings of clustered 
elements. They are based on inter-cluster similarity or dissimilarity data, although 
unlike the external clustering criteria functions, evaluation functions use this infor-
mation for clustering evaluation rather than optimization. External quality measures 
compare clustering results to an external set of known classes of the clustered ele-
ments. For example, for document clustering it can be a set of predetermined topics. 
The result of evaluation with an internal quality measure directly depends on the 
clustering function used for the clustering and such evaluation is difficult to interpret 
for a set of contexts from the point of view on their information content.

In our work we evaluate clustering results against the set of translation equiva-
lents obtained from a parallel corpus (see Section 3). We chose the widespread exter-
nal measures of entropy and purity implemented in SenseClusters toolkit. We adopt 
the definitions and formulas for clustering entropy and purity given in [21]. The en-
tropy looks at uncertainty of a class distribution via clusters, while the purity evalu-
ates how good a class corresponds to one cluster In brief, the lower is the entropy and 
the higher is the purity, the better.

3.	 Experimental Settings

This section describes the experiment that we performed. It is aimed at exploration 
of how well unsupervised context clustering forms clusters that would be appropriate 
for word translation disambiguation. For this experiment, first, we use SenseCluster 
toolkit to perform unsupervised context clustering on our dataset. Then, we evaluate 
the clustering results comparing them to the context classes formed by identity of cor-
responding translations from parallel texts. This experiment is a continuation and 
extension of works [19, 21, 24]. In contrast to our experiment, they all dealt only with 
monolingual material. Works [21, 24] detected some optimal parameters –clustering 
techniques and criterion functions respectively– for document clustering. They used 
collections of abstracts as their dataset. Hence, the sizes of the documents are compa-
rable to a size of a short context that we use in the work. Therefore, their results are 
applicable for our experiment. Work [19] compares vector and similarity spaces for 
context clustering. For their experiment the authors used senseval-2 word sense dis-
ambiguation dataset, where each context is about 3–7 sentences per contexts, which 
perfectly correlate with the size of the contexts in our experiment.

We base our experiment on the results obtained in these work and explore 
whether these clustering parameters are appropriate for translation detection. The 
main assumption is that translations are correlated with a sense of a translated word. 
Unsupervised word sense discrimination holds that similar senses will be grouped 
into one cluster. Consequently, the contexts in a cluster would correspond to one 
translation equivalent or to several synonymous translations. We also expect that two 
or more clusters might correspond to the same translation, which is true for the case 
when the translation preserves the same homonymy as the translated word.
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3.1.	Dataset

We used sentence aligned English-Spanish Europarl parallel corpus from 
OPUS open corpus [22] to extract contexts for clustering and to detect translation 
equivalents.

For our purpose of exploring context clustering suitability for word translation 
disambiguation, an ambiguous word had to satisfy the following criteria:

•	 to have a number of instances in a chosen parallel corpus that would be sufficient 
for unsupervised clustering (we set it 1000, which is about 2 to 5 times more 
than senseval-2 datasets used in [19] and realistic enough to be extracted from 
a corpus);

•	 to have more than one candidate translation in the parallel part of a corpus.
The analysis of the above criteria was performed using OPUS word alignment 

database. We have chosen several words that satisfy these criteria: facility, post, lan-
guage. Due to time constraints, we present results only for the word “FACILITY”.

As a context we used an extract of 7 consecutive sentences from the corpus, 
a sentence with the chosen source word being the forth. We chose the seven sentence 
context size basing on the average lengths of senseval-2 contexts. If a sentence con-
taining the target word were closer to the beginning or the end the size of a context 
remained the same with more sentences to the end or beginning correspondingly. 
At this step we extracted 1771 contexts for our dataset.

The dataset was converted to lower-case and tokenized.
For evaluation of clustering results we obtained a set of corresponding transla-

tion equivalents from the same parallel corpus. Initially we intended to perform word 
alignment automatically with alignment tool GIZA++ [14]. Yet we obtained exces-
sively many word-to-NULL alignments for the chosen word. It might be due to a rela-
tively small size of the dataset corpus, which additionally contained nearly 20 % (342) 
of wrong sentence alignments.

Therefore, we developed an alternative approach to detection of corresponding 
translations for a selected source word. For ca. 600 entries of our dataset, pruned 
alignments were available from OPUS word alignment database. The rest was de-
tected manually by comparing source word contexts with their corresponding paral-
lel contexts.

First, we deleted wrongly aligned contexts from our dataset.
There were also cases when the word “facility” did not have a direct translation 

equivalent. We tagged such cases as NOTAG since we wanted to detect whether unsu-
pervised sense clustering would find something in common between contexts that are 
translated in this manner.

Further, we grouped low-frequency (from 1 to 6) translation equivalents with 
their synonyms considering their context usage.

In the end, we obtained a dataset of 1429 contexts and 21 translation classes 
including NOTAG. These translation classes serve for external evaluation of ob-
tained clusters. The dataset along with a translation candidate key file and infor-
mation on some intermediate steps can be found at www.gelbukh.com/resources/
word-translation-alignments.
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According to the monolingual dictionaries, which we consulted (Online Mer-
riam-Webster, Oxford Concise Thesaurus, WordNet, and Larousse American Pocket), 
they distinguish between 4 and 5 senses for the word “facility” that can be described 
as:

•	 installation, building;
•	 service;
•	 equipment;
•	 possibility;
•	 readiness.

We took these numbers as guidance for the minimum number of clusters. There-
fore, any combination of parameter values that gave fewer than 4 clusters was dis-
carded from the comparison of parameter values.

3.2.	Clustering parameters

In this work we perform context clustering with SenseClusters toolkit [18]. 
It is a complete and freely available context clustering system that provides support 
for feature selection from large corpora, several different context representation 
schemes, various clustering algorithms, and evaluation of the discovered clusters.

Parameters with fixed values We set values of several parameters to be un-
changeable and regarded as “default” for our experiments:

•	 the order of feature representation is set to -o2, which stands for the second 
order;

•	 the context are represented as feature vectors in vector space;
•	 window is set to 5;
•	 frequency-cut parameter r is set to 3.

We chose the second-order context representation since it is shown to be better 
for short contexts [15], 7-sentece contexts being regarded as a short contexts.

The vector space is preferred over the similarity matrix representation based 
on the work of Purandare and Pedersen [19], where contexts of the similar size 
were used for the task of word sense discrimination. They analyzed 6 combinations 
of 4 clustering parameters: order of context representation, features, vector space/
similarity matrix, and clustering method. Purandare and Pedersen show that the best 
results were achieved for combinations with vector space.

For the value of window parameter we took as a reference the work by Purandare 
[17], where this parameter was set to 5.

We set the value of the frequency-cut parameter r to 3 heuristically. We consid-
ered that in [17] it was set to 2 for datasets that were 2 to 5 times smaller than ours. 
Therefore, we slightly increased the frequency-cut parameter to avoid too much noise 
and yet we did not increase it significantly so that significant features would not be cut 
out.
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Parameters with varied values In the experiment we varied several param-
eters: features for context representation, clustering methods, criterion functions and 
cluster stopping criteria. Since the total number of possible combinations is very high, 
we analyzed only among those parameter values that are proved to be the best for 
document and context clustering in [21, 24]. We also considered repeated bisections 
and refined repeated bisections methods since they are considered in works on con-
text clustering [19, 20]. The parameters with their varied values are: 

•	 features for context representation: unigrams, bigrams, co-occurrences, target 
co-occurrences;

•	 clustering methods: direct k-means, repeated bisection, refined repeated bisec-
tion, agglomerative;

•	 criterion functions: I2 and H2 for partitional methods and UPGMA for the ag-
glomerative method;

•	 cluster stopping measures: gap, pk1, pk2, pk3.
The total number of experiments is 112.

4.	 Experimental results

The number of clusters that we obtained with various clustering parameter com-
binations varied from 1 to 6.

Cluster stopping measures. Table 1 shows the frequencies of each number 
of clusters for a cluster stopping measure.

Table 1. Distribution of resulting cluster number per cluster stopping measure.

cl. num. 1 2 3 4 5 6

gap 24 0 4 0 0 0
pk1 11 10 3 1 3 0
pk2 0 8 10 3 4 3
pk3 0 12 9 6 1 0

As it follows from Table 3, cluster stopping measures gap and pk1 provide the 
lowest number of clusters. Gap statistic measure gives no results that would be higher 
than the threshold of 4 clusters. Pk1 measure gives acceptable results only in 4 cases, 
which is 3.5 % of all cases.

The fractions of experiments for each cluster number from the total number 
of experiments are shown in Table 2.

Table 2. Fraction of experiments that resulted in each cluster number.

cl. num. 1 2 3 4 5 6

fraction, % 31.2 26.8 23.2 9.0 7.1 2.7
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Of the total number of experiments 50 % were for cluster numbers 2 and 3, and 
only 18.8 % (21 of a total of 112 combinations) passed the threshold of 4 clusters.

An assumption that the word “facility” may have only 2 to 3 “real” or well dis-
tinguishable senses does not seem to be probable. If we take a look at the list of gen-
eralized senses for “facility” in Section 3, they hardly can be grouped into a number 
of independent and non-intersecting senses less than four. And if we take into account 
that a lexical company of a word in context might vary even more than its semantic 
meaning, we would rather expect a larger number of clusters than a smaller one.

Therefore, we interpret the steadily low number of clusters for cluster stopping 
criteria gap and pk1 as an inherent quality of these criteria. Pk2 and pk3 measures 
give acceptable results in 36 % and 25 % of their usage cases respectively.

Context features, entropy and purity. The parameter values, the entropy, and 
the purity for the experiments, for which the number of clusters resulted to be at least 
4 are presented in Table 3. We remind that the number of senses for “facility” given 
by monolingual dictionaries is 4 to 5.

It is to be noted that no experiments with bigram features, which are two con-
secutive words in a given window, and target co-occurrences, which are co-occur-
rences with the target word “facility”, resulted in the number of clusters more than 
or equal to 4. Therefore, the results of all experiments with these features were dis-
carded and are not shown in Table 3. The fact that clustering with bigram and tar-
get co-occurrence features gave very low numbers of resulting clusters might be ex-
plained by a hypothesis that conditions imposed on these features are hard to satisfy: 
bigrams require repeated consecutiveness of a word pair and target co-occurrences 
require co-occurrence with a target word within a certain window. Therefore, only 
contexts with very high frequency features are clustered together, and the remain-
ing cluster used for contexts that could not be clustered with others. To check this 
explanation further experiments with lower frequency-cut value and wider window 
are needed.

Notations of Table 3 are as follows: clmeth stands for “clustering method”, crfun 
stands for “criterion function”, clstop stands for “cluster stopping measure”, cl # is the 
resulting number of clusters for a given combination of parameters, E and P are en-
tropy and purity respectively. In the table we used the following abbreviations: agglo 
for agglomerative clustering method, direct for direct k-means, rb for repeated bisec-
tion, rbr for refined repeated bisection. These notations and abbreviations are used 
in the rest of the paper. Other values that are expressed with alphanumeric sequences 
are explained in Section 2 and in Section 3.2.
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Table 3. The best experiment results.

clmeth crfun clstop cl # E P clmeth crfun clstop cl # E P

Co-occurrences Unigrams

agglo upgma pk2 6 80.6 25.5 agglo upgma pk2 6 84.1 24.2
direct h2 pk1 4 80.4 25.6 direct i2 pk2 6 74.8 26.9
direct h2 pk3 4 80.4 25.6 rb h2 pk1 5 75.2 28.3
direct i2 pk2 5 80.2 25.5 rb h2 pk2 4 76.2 27.6
direct i2 pk3 4 80.4 25.6 rb h2 pk3 4 76.2 27.6

rb h2 pk1 5 80.7 25.0 rb i2 pk2 5 75.6 27.8
rb h2 pk2 4 81.0 25.0 rbr h2 pk1 5 75.2 28.3
rb h2 pk3 4 81.0 25.0 rbr h2 pk2 4 76.2 27.6
rb i2 pk3 5 80.7 25.0 rbr h2 pk3 4 76.2 27.6
rbr h2 pk3 4 80.4 25.6 rbr i2 pk2 5 75.3 28.3
rbr i2 pk2 5 80.2 25.5

As it can be observed from Table 3, several parameter combinations with uni-
gram and co-occurrence features passed the threshold. It can be observed from Table 
5 that for partitional clustering techniques –direct k-means, repeated bisections and 
refined repeated bisections– variation of entropy and purity has some dependency 
on the number of clusters. For fixed number of clusters and context feature pairs of en-
tropy and purity can be grouped into as few as one or two groups of equal values. For 
example, if we set a context feature to be co-occurrence and a number for clusters 
to be 4, in 4 of 6 cases (entropy; purity) = (80.4; 25.6) and in the rest of the cases 
(entropy; purity) = (81.0; 25.0). To detect the actual dependence further experiments 
are needed.

The best entropy and purity values correspond to the parameter combinations 
with unigram features. In general, the entropy for unigrams is about 5 % better than 
the entropy for co-occurrences and the purity is 12 % better for unigrams than for 
co-occurrences. Yet comparison of these entropy and purity values to those obtained 
in [21, 24] is hindered by the dependence of entropy and purity on the number 
of classes.

Our consideration is that the entropy and purity measures as they are described 
in Section 2.7 might be inappropriate for cluster evaluation in our task. These mea-
sures were intent to evaluate word sense discrimination results, when it is assumed 
that each cluster corresponds to a sense and it is expected (or manually set) that the 
number of clusters would be more or less the same as the number of senses. On the 
contrary, in our case it is completely acceptable if more than one class are clustered 
together, which corresponds to the case of synonymous translations, or if elements 
of one class are distributed between several clusters, which is the case of preserved 
homonymy.

Number of clusters. To check how cluster number will influence the entropy and 
purity, we performed an experiment with the number of clusters manually set to 21, 
which is the number of our translation classes. In this experiment we used a clustering 
parameter combination that gave the highest purity. The results are shown in Table 4.
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Table 4. Entropy and purity for a predetermined number of clusters.

clmeth crfun clstop cl # E P

Unigrams with fixed number of clusters

rb h2 n/a 21 67.2 32.7

As it can be seen, the more than fourfold increase of the cluster number from 
5 to 21 improves the values of entropy and purity only 10.6 % and 15.5 % respectively.

Illustration of clustering results. For illustration of clustering results we chose 
two of the best experiment cases: one for the co-occurrence feature and another for 
the unigram feature. We assume that this small sample from the set of 112 experi-
ments would be enough demonstrative to provide general impression of the experi-
ment and will not consume much space.

Table 5 shows the distribution of translation classes through resulting context 
clusters for the chosen parameter combinations.

Table 5. Illustration of the class-cluster distribution for two of the best 
experiment cases.
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Co-occurrences, Agglomerative Clustering, UPGMA, Pk2, Entropy = 0.806, P= 0.255
0 989 42 22 121 196 94 96 19 95 82 16 25 18 19 55 18 16 20 8 14 4 9

1 3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 350 3 6 24 142 40 40 3 14 6 10 4 9 0 20 1 6 1 5 2 0 14

4 11 0 0 5 1 1 0 0 2 0 0 0 1 0 0 0 0 0 0 1 0 0

5 75 18 1 1 4 3 5 19 4 8 2 0 1 2 1 1 0 5 0 0 0 0

Unigrams, Repeated Bisections, H2, Pk1, E= 0.758, P=0.276
0 213 27 1 24 8 17 16 6 24 26 1 9 3 7 12 9 1 15 1 3 2 1

1 156 1 0 1 112 10 3 0 1 1 0 0 1 0 5 0 8 0 2 0 0 11

2 282 0 13 42 83 26 35 3 22 4 6 4 8 3 13 1 3 0 2 9 0 5

3 307 32 1 29 24 25 11 25 32 57 4 9 6 7 18 7 3 10 4 0 2 1

4 471 3 14 56 116 61 77 7 36 8 17 7 11 4 28 4 7 1 4 5 0 5

To make it easier to interpret, we give an illustration of several consecutive con-
texts (shortened to one sentence with the target word to save some space) that were 
clustered together in cluster 0 in the experiment with the second parameter combi-
nation from Table 5. A corresponding Spanish translation is located between quotes 
in a translation id tag and a short definition in English is given in brackets after the 
Spanish translation:

<translation id=“dispositivo” (mechanism; device)>
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Finally, we need some coordination of national maritime authorities in order 
to achieve some sort of European facility comparable to the coastguards who supervise 
the coasts of the United States.

<translation id=“capacidad” (capacity; here: creditworthiness)>
We shall also vote against the abolition of the facility for the Member States to in-

crease to 35 %...
<translation id=“servicio” (service)>
It would be a serious matter if every non-European company were to learn to use 

Europe as a bus where you do not have to pay for the ticket, you do not have to pay for 
cooperation, you benefit from using the facility and you leave without being accountable 
to anyone.

Here we have an example of one of 27 contexts tagged with the translation “dis-
positivo”, one of 9 “capacidad” contexts, and one of 16 “servicio” contexts that all were 
clustered together in cluster 0 along with other contexts corresponding to all transla-
tion variants.

In the beginning of Section 3 we explained the assumption that unsupervised 
context clustering would be suitable for word translation selection if a cluster cor-
responded to one or more entire translation classes, which is the case of synonymy 
between translations, or if a translation class was distributed between some clusters, 
which is the case of preserved cross-lingual homonymy. For these cases a clustering 
solution would tend to obtain “neat” groupings of classes per clusters and intuitively 
we can predict that a class-cluster distribution table would have more zeros than non-
zeros. However, we see (especially in the unigram case) that nearly all cells have non-
zero values. It means that a context corresponding to any translation equivalent can 
be found in any cluster. This violates our initial assumption about context clustering 
suitability for word translation selection.

5.	 Conclusions and future work

In this work we perform comparison of various clustering parameter combina-
tions and explored suitability of context clustering application to unsupervised word 
translation.

The number of clusters more than the threshold of 4 occurred only for 18.8 % 
of the experiments. Numbers of 2 and 3 were detected in 50 % of cases. Yet these 
results cannot be interpreted from the semantic point of view, therefore, they were 
discarded as it was initially intended. However, formal analysis of semantic similar-
ity of senses through an ontology or semantic hierarchy can give new perspective 
on these numbers.

We detected that cluster stopping measures gap and pk1 provide very low num-
bers of clusters that cannot be interpret from the semantic point of view. The numbers 
of clusters that correspond to the semantic assumption of the number of word senses 
can be achieved in most cases with pk2 and pk3 cluster stopping measure. Also pk1 
cluster stopping measure should not be completely discarded since it provided 19 % 
of all acceptable results.
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We were not able to detect acceptable results for bigram and target co-occur-
rence features. It might be explained by inappropriate window size and data sparse-
ness that in our experiments was not handled through singular value decomposition. 
Hence, further experiments with singular value decomposition and varying window 
size are necessary.

The evaluation of results through entropy and purity gives us the numbers that 
are not easily interpreted in the task of word translation when the number of classes 
is much higher than the number of clusters. Hence, we will work on development 
of different quality measure that would be more adequate for our goals.

References

1.	 Agirre E., Edmonds P.� (eds.) (2006), Word Sense Disambiguation. Algorithms 
and Applications, Springer.

2.	 Carpuat M., Wu D.,� Word sense disambiguation vs. statistical machine transla-
tion. Proc. of the annual meeting of the ACL, 2005, pp. 387–394.

3.	 Carpuat M., Wu D.�, Evaluating the word sense disambiguation performance 
of statistical machine translation. Proc. of the Second International Joint Con-
ference on Natural Language Processing (IJCNLP), 2005, pp.122–127.

4.	 Carpuat M., Wu D.�, Improving statistical machine translation using word sense 
disambiguation, Proc. of the 2007 Joint Conference on Empirical Methods 
in Natural Language Processing and Computational Natural Language Learning 
(EMNLP-CoNLL 2007), 2007, pp. 61–72.

5.	 Chan Y. S., Ng H. T.�, Word sense disambiguation improves statistical machine 
translation, Proc. of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, Prague, Czech Republic, 2007, pp. 33–40.

6.	 Diab M., Resnik P.�, An unsupervised method for word sense tagging using paral-
lel corpora, Proc. of the 40th Annual Meeting on Association for Computational 
Linguistics, 2002, pp. 255–262.

7.	 Gale W., Church K. W., David Yarowsky D.� Estimating upper and lower bounds 
on the performance of word-sense disambiguation programs. Proc. of the 30th 
Annual Meeting of the Association for Computational Linguistics, Newark, Dela-
ware, 1992.

8.	 Holmqvist M.�, Memory-based learning of word translation, Proc. of the 16th Nor-
dic Conference of Computational Linguistics NODALIDA-2007, Tartu, Estonia, 
2007, pp. 231–234.

9.	 Jain A. K., Murty M. N., Patrick J. Flynn P. J.� (1999), Data Clustering: A Review. 
ACM Computing Syrveys, vol. 21, pp. 264–323.

10.	 Karypis, G.� (2003), CLUTO — A Clustreing Toolkit, University of Minnesota, De-
partment of Computer Science Technical Report 02–017.

11.	 Kulkarni A., Pedersen, T.� (2006), Unsupervised Context Discrimination and Au-
tomatic Cluster Stopping, MS Thesis, University of Minnesota Supercomputing 
Institute Research Report UMSI 2006/90.



Exploring context clustering for term translation

	

12.	 Marsi E., Lynum A., Bungum L., Gambäck B.�, Word Translation Disambiguation 
without Parallel Texts. Proc. International Workshop on Using Linguistic Infor-
mation for Hybrid Machine Translation, Barcelona, Spain, 2011.

13.	 Navigli R.� (2009), Word sense disambiguation: A survey, ACM Computing Sur-
veys, vol. 41(2), pp. 1–69.

14.	 Och F. J., Ney H.� (2003), A Systematic Comparison of Various Statistical Align-
ment Models, Computational Linguistics, vol. 29(1), pp. 19–51.

15.	 Pedersen T.� (2008), Computational Approaches to Measuring the Similarity 
of Short Contexts: A Review of Applications and Methods, University of Minne-
sota Supercomputing Institute Research Report UMSI 2010/118.

16.	 Pedersen T., Bruce R.�, Distinguishing word senses in untagged text, Proc. of the 
Second Conference on Empirical Methods in Natural Language Processing, Prov-
idence, RI, 1997, pp. 197–207.

17.	 Purandare A.� (2004), Unsupervised Word Sense Discrimination By Clustering 
Similar Contexts. MS Thesis. University of Minnesota.

18.	 Purandare A., Pedersen T.�, SenseClusters — Finding Clusters that Represent 
Word Senses. Proc. of Fifth Annual Meeting of the North American Chapter 
of the Association for Computational Linguistics (NAACL-04), 2004, pp. 26–29.

19.	 Purandare A., Pedersen T.�, Word Sense Discrimination by Clustering Contexts 
in Vector and Similarity Spaces, HLT-NAACL 2004 Workshop: Eighth Conference 
on Computational Natural Language Learning (CoNLL-2004), 2004, pp. 41–48.

20.	 Schütze, H.� (1998), Automatic Word Sense Discrimination. Journal of Computa-
tional Linguistics, vol. 24(1), pp. 97–123.

21.	 Steinbach M., Karypis G., Kumar V.� (2000), A comparison of document clustering 
techniques, University of Minnesota, Technical Report 00–034.

22.	 Tiedemann J.� (2009), News from OPUS — A Collection of Multilingual Parallel 
Corpora with Tools and Interfaces, Recent Advances in Natural Language Pro-
cessing, vol. V, pp. 237–248.

23.	 Vickrey D., Biewald L., Teyssier M., Koller D.�, Word-sense disambiguation for ma-
chine translation. Proc. of the conference on Human Language Technology and 
Empirical Methods in Natural Language Processing 2005, 2005, pp. 771–778.

24.	 Zhao Y., Karypis G.� (2001), Criterion Functions for Document Clustering: Experi-
ments and Analysis, University of Minnesota, Department of Computer Science 
Technical Report 01–040.


