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We propose a speech parameter generation approach for Russian based
on hidden Markov models. The speech parameter sequence is generated
from HMMs whose observation vectors contain speech characteristics.
As a baseline we use the spectrum represented by mel-frequency ceps-
tral coefficients (MFCC), pitch and duration parameters. All of them can
be easily complemented by any other parameters, improving the quality.
For the creation of the voice model we use linguistic and prosodic features
which are the observations of every allophone in the utterance. This paper
also presents the results of research into selecting the most effective fea-
tures to characterize an allophone. Experimental results show that Russian
speech can be successfully parameterized and an arbitrary utterance can
be synthesized from the generated parameters.
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1. Introduction

Voice analysis and synthesis have been vastly studied in recent years. Many ap-
plications and methods have been developed in these areas. The increasing availabil-
ity of large speech databases makes it possible to construct speech synthesis systems
by means of a data-driven or corpus-based approach, by applying statistical learning
algorithms. These systems can be automatically trained and are able not only to pro-
duce natural and high-quality synthetic speech but also, importantly, to imitate voice
characteristics of the original speaker.

For constructing such a system the use of hidden Markov models (HMMs)
is widely employed [1-3]. HMMs have been successfully applied to model the se-
quence of speech spectra in speech recognition systems. The quality of HMM-based
speech recognition systems has been improved by techniques which utilize the flex-
ibility of HMMs. These are mixtures of Gaussian densities, tying mechanism, context-
dependent modeling dynamic feature parameters and speaker and environment ad-
aptation methods. By applying these techniques to a TTS system we can also support
the contemporary tendency towards the synthesis of voices with different styles and
emotions [4-5].
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In this research we apply the HMM-based approach to speech parameterization
to Russian. In our work we use spectrum, pitch and duration as baseline parameters
which can be easily complemented by dynamic features and any other features to im-
prove the quality of synthesized speech. It is worth noting that the voice model can
be created with no need for large databases [6-8].

The paper is organized as follows: in Section 2 all the procedures that are car-
ried out by the TTS system are described, from the source database to the synthesized
speech. Section 3 describes the voice model building methods to synthesize a given
utterance. In Section 4, linguistic and prosodic features are presented. Section 5 deals
with the system implementation and experimental results. The conclusions are given
in Section 6.

2. TTS Engine description

The speech generation mechanism is a subpart of the fully-functional text-to-
speech system which has been constructed on the basis of the Vital Voice [9] system
and HTK [10]. The procedures of voice model building and synthesis of an arbitrary
utterance by the speech synthesis engine are shown in Figure 1.
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Fig. 1. Diagram illustrating the basic steps conducted by the speech
synthesis engine
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2.1. Training

The training starts with parameter extraction. For each allophone from the da-
tabase, linguistic and prosodic features and voice parameters are calculated. Then
context-dependent HMMs are trained. In the last step, HMM states are clustered
based on linguistic and prosodic features. Eventually we have the voice model. Sec-
tion 3 gives these steps in detail.

2.2. Synthesis

The synthesis procedure starts with transcribing the utterance to an allophone
sequence and generating the linguistic and prosodic features which are eventually
used to select corresponding leaves from each of the 2N+1 (where N is the number
of states in HMM) decision trees generated by the context-clustering procedure in the
training step. At the end of this stage, three logical HMM sequences, whose states cor-
respond to the selected leaves, are obtained.

The three above-mentioned HMM sequences are used to derive spectrum pa-
rameters, fundamental frequencies and state durations. Then excitation is generated
based on FO and energy, and synthesized speech is extracted by the synthesis filter
based on excitation and spectra [11-13].

3. Voice model building

Initially a sequence of fundamental frequencies {F0!, ..., FOX}, including voicing
decision information (if FO is O then the frame is considered unvoiced), where K is the
total number of frames of all sentences from the training database, is extracted
on a short-term basis. Simultaneously, a sequence of spectrum parameter (mel-ceps-
tral coefficients [14]) vectors which represent speech envelope spectra, {c!, ..., cX},
is obtained. Each MFCC vector c¢'=[c|...c, ], where the i indicates the frame number
and [-]" means transposition, is derived through an M-th order mel-cepstral analysis.

After that, linguistic and prosodic features for each allophone of all the sentences
of the training database are estimated. The description of linguistic and prosodic fea-
tures for Russian is given in Section 4.

In the next step HMM prototypes for each allophone are created. Each HMM
corresponds to a no-skip N-state left-to-right model with N = 5. Each output obser-
vation vector o' for the i-th frame consists of 2 streams, o'= oiT, EQT]T, where stream
1 is a vector composed by MFCCs, their delta and delta-delta components; and stream
2 is a vector composed by FOs, their delta and delta-delta components as well.

The observation vector o' is the output of an HMM state n according to a prob-
ability given by
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where 6}? means a Gaussian distribution with mean vector u and covariance ma-
trix ¥, o, is the weight for the I-th mixture component of the j-th stream of vector 0!
(output of the state n) with R, being the corresponding number of mixture compo-
nents. The stream vectors are modelled by single-mixture continuous Gaussian distri-
butions where the dimensionality is 3(M+1) for ol and 3 for o}.

For each k-th HMM the durations of the N states are considered as vectors
d*=[dk,...,d%]", where d* represents the duration of the n-th state. Furthermore, each
duration vector is modelled by an N-dimensional single-mixture Gaussian distri-
bution. The output probabilities of the state duration vectors are thus re-estimated
by Baum-Welch iterations in the same way as the output probabilities of the speech
parameters [15].

During the voice model building, a tree-based clustering technique is applied
to the HMM-states of MFCC and FO values, as well as to the state duration models. In the
end of the process, 2N+1 different acoustic decision trees are generated: N trees for
mel-cepstral coefficients, N trees for FO features and finally one tree for state duration.

4. Contextual features

When speech synthesis systems are constructed, some parameters are neces-
sary to provide a natural rendering of the prosody. These parameters might include
context-dependent items, for instance preceding/following phone, syllable, word,
sentence etc [17].

The determination of contextual features for a particular language is based
on linguistic and prosodic parameters. Apart from this theoretical approach, empiri-
cal analysis can also be implemented in order to tune the features by extending the
factors that are important and eliminating the ones which are not [18].

The contextual features listed in Table 1, which were selected as the most infor-
mative ones to build the voice model, were first obtained from those used in HMM-
based Brazilian Portuguese speech synthesis [18] and eventually adjusted through
theoretical and empirical methods to Russian.

5. Implementation

5.1. The corpus

In this work we used the speech corpora (one male and one female voices)
initially prepared for the Vital Voice TTS system [9]. They correspond to six hours
of speech excluding silence regions. The databases were recorded at a sample rate
of 22050 Hz with 16 bits per sample.

The phonetic labeling of the database was carried out using the phone set de-
scribed in [16]. Time label boundaries were obtained manually. Further, syllable and
word labeling were also manually conducted for each sentence.
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Table 1. Contextual features

Allophone features

Phone before previous Phone after next

Phone position from the beginning
Previous phone of the syllable

Phone position from the end of the
Current phone syllable
Next phone

Syllable features

Syllable position from the end of the
Previous syllable word

Syllable position from the beginning
Current syllable of the sentence

Syllable position from the end of the
Next syllable sentence
Number of phones in the previous Number of stressed syllables before
syllable current syllable in the sentence

Number of stressed syllables after cur-
Number of phones in the current syllable | rent syllable in the sentence

Number of phones in the next syllable Vowel name in the current syllable
Syllable position from the beginning
of the word

Word features

Number of syllables in the current

Part of speech of the previous word word
Part of speech of the current word Number of syllables in the next word

Word position from the beginning
Part of speech of the next word of the sentence
Number of syllables in the previous Word position from the end of the
word sentence

Sentence features

Number of syllables in the current Sentence type (declarative, exclama-
sentence tion etc.)

Number of words in the current sentence

5.2. Parameter extraction

Fundamental frequencies and mel-cepstral coefficients were extracted from the
speech corpus in every 10ms frame. MFCCs were obtained through a 25-th order anal-
ysis (M=25) by means of a 25ms Henning window.
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5.3. Generated decision trees

Figures 2 and 3 show the top part of the decision tree for mel-cepstral coefficients
of [al] phoneme, and state durations, respectively. By observing Figure 2 and Fig-
ure 3, and assuming that top nodes are more important when selecting the parameter
which is being clustered, we can notice that the information about the syllable, word
and sentence is more crucial for state duration. On the other hand, questions related
to phonemes are more significant to the tree of mel-cepstral coefficients.
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Fig. 2. Top of the decision-tree constructed to cluster the third
HMM state for mel-cepstral coefficients of [a1] phoneme
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5.4. Example of speech synthesis

Figure 4 presents the spectrograms for the natural sentence “9to mos cectpa”
(this is my sister) and its synthesized version. It should be noted that the utterance
is not part of the training database.

Aside from the reproduction of phones it can be also observed from Figure 4 that
the synthesized version presents a speaking rate similar to that of the natural speech.
This shows an important characteristic of the HMM-based speech synthesis approach:
the ability to imitate the prosody of the speech corpus which was used to build the
voice model.

Although it has been reported that even with a small database it is possi-
ble to synthesize speech, lack of data strongly affects the quality of synthesized
speech. Once the HMMs do not properly reflect the characteristics of some lin-
guistic and prosodic feature sets, inconsistent parameters may be generated dur-
ing synthesizing, and as a result we could have poor quality speech. Thus the
process of preparing the database is very important for building appropriate voice
models.
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Fig. 4. Spectrograms for the natural sentence “9T10 most cectpa’
(this is my sister) (top) and its synthesized version (bottom)
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6.

Conclusions

This paper described an approach for corpus-based speech parameter genera-

tion for a Russian text-to-speech system. The engine is based on a method where
the speech parameters are obtained from HMMs whose observation vectors consist
of spectum, FO and duration features. We performed context-clustering to achieve
a greater flexibility of the algorithm and to make it possible to use the voice model
even when a small database is used. The clusterization procedure is based on linguis-
tic and prosodic features of Russian which were also presented in this paper. Experi-
mental results show that Russian speech can be successfully parameterized and any
utterance can be synthesized from the generated parameters.
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