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The paper deals with statistical methods for predicting positions and dura-
tions of prosodic breaks in a Russian TTS system. We use CART and Random 
Forest classifiers to calculate probabilities for break placement and break 
durations, using grammatical feature tags, punctuation, word and syllable 
counts and other features to train the classifier. The classifiers are trained 
using a large high-quality speech database consisting of read speech. The 
experimental results for prosodic break prediction shown an improvement 
compared to the rule-based algorithm currently integrated in the VitalVoice 
TTS system; the Random Forest classifier shows the best results, although 
the large size of the model makes it more difficult to use in a commercial TTS 
system. To make the system more flexible and deal with the remaining break 
placement errors, we propose combining probabilities and rules in a work-
ing TTS system, which is the direction of our future research. We observe 
good results in experiments with predicting pause durations. A statistical 
model of break duration prediction has been implemented in the TTS sys-
tem in order to make synthesized speech more natural.
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sodic boundaries, pauses, statistical models



Khomitsevich O. G., Chistikov P. G.

�

1.	 Introduction

Natural-sounding prosody is a key component for a successful Text-to-Speech 
(TTS) system, and correct prosodic segmentation of speech is necessary for achiev-
ing this goal. In natural speech, if an utterance is sufficiently long, it is normally di-
vided into prosodic phrases, which are marked by intonational unity and are usually 
separated by pauses. Large chunks of speech pronounced without any breaks sound 
monotonous and are uncomfortable for the listener. In addition, accurate break place-
ment enhances the intelligibility of speech, while pauses in the wrong positions can 
distort the meaning of a sentence or make it incomprehensible.

The way our natural speech is segmented prosodically depends on various fac-
tors. A major factor is syntactic structure; prosodic breaks often fall between syntac-
tic constituents, so that syntactic structure can be seen as “mapped” onto prosodic 
phrases [1, 2]. However, the length of the sentence, semantics of certain words, and 
other features also play a role [3]. In a TTS system, these factors can be captured ei-
ther by explicit rules defining which words in the synthesized sentence should be fol-
lowed by a pause [4, 5], or by statistical models trained on large speech corpora and 
predicting probabilities of prosodic breaks. The latter method has become prevalent 
in the recent years (see, for example, [6–9]), and in this paper we will explore this ap-
proach as applied to a Russian TTS system.

2.	 Break detection using statistical methods

The principle behind automatic prosodic segmentation of speech is training 
a classifier on a large speech database which is labeled with word boundaries, Part-
of-Speech (POS) and other grammatical tags, punctuation marks that were present 
in the original text (in case of read speech), and phrase breaks in the speech signal. 
Features like grammatical form, the place of the word in the sentence, the length 
of the sentence, the presence or absence of a punctuation mark, etc, are used by the 
classifier to predict the location and length of phrasal breaks in the synthesized 
speech.

This method has yielded good results for English and a number of other lan-
guages (as reported in [8] for Spanish, [9] for Arabic, etc), although some problems 
are bound to arise if the method is applied to Russian. Unlike English, Russian has 
relatively free word order, which means there is a lot of variation in possible POS 
sequences, and data sparseness can be an issue for model training. Russian also has 
rich morphology, which greatly increases the number of grammatical tags required 
for labeling text (and also increases variation in word form combinations). A large 
number of word forms in Russian are homonymous, so correct homonym resolution 
is essential for phrasal break detection, and errors in grammatical labeling of hom-
onyms often lead to errors in break placement.

Despite these problems, statistical methods of phrasal break placement and 
break length prediction are a promising approach for Russian TTS systems, first of all 
because they aim to model the natural behavior of speakers, rather than rely on rigid 
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rules and constants. They are also easier to implement because they do not require 
much expert linguistic knowledge, though tuning the system for practical use may 
require additional linguistic constraints. In this paper we describe methods of phrasal 
break prediction using CART and RF classifiers, which are tested using the VitalVoice 
Russian TTS system [10].

3.	 Experimental setup

We conducted experiments using the CART classifier [11] for predicting both 
break placement and break duration, and the Random Forest classifier [12] for break 
placement only.

CART is a recursive partitioning method based on minimization of partition 
goodness criterion (1):
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|C| is a size of cluster C, d(U,V) is a distance between U и V vectors, stop criterion 
is the minimal number of items in the cluster (in our work this number is 3).

A Random Forest classifies data using a given set of features by means of a hi-
erarchy (a “tree”) of queries, based on the predictive value of each feature at each 
point. The classifier is capable of processing large amounts of training data. The 
leaves of each tree in the forest store the class distribution of all samples falling into 
the corresponding region of the feature space, which then serve as predictors for test 
samples. In our system, we use a forest containing 100 trees, and the probabilistic 
value is calculated by dividing the number of trees classifying the target class by the 
total number of trees. Each tree is built on the basis of 60% of randomized training 
data. This prevents the data from being dependent on noise in the training set.

For break placement prediction, we examined each sentence separately, because 
in the TTS system text is divided into sentences during the normalization process, and 
each sentence is processed separately. As for break duration, both intrasentential and 
intersentential breaks were taken into account.

We used the following features for the classification:
•	 Punctuation features. All common punctuation marks are included in the feature 

set. These features are calculated for the current word as well as two preceding 
and two following words.
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•	 Word and syllable count features: number of words and syllables in the sentence, 
number of words and syllables from the previous break to the current word, from 
the current word to the end of the sentence, etc.

•	 Morphological word features. Morphological information is calculated using 
the VitalVoice speech synthesis engine which includes a morphogrammatical 
dictionary. Since using all grammatical features of Russian words would re-
sult in an enormous number of tags, which would be too large for the classifier 
to cope with, we decided to limit the grammatical features to part of speech and 
case. We also use the information on whether or not the word is a proper noun 
(name, geographical location, ect). Another word feature is capitalization of the 
first letter of the word. These features are calculated for the current word as well 
as two preceding and two following words. In addition, we use specific features 
intended for capturing grammatical agreement between words: whether or not 
the grammatical form of the current word matches that of the following word 
and the second word on the right.
Both in model training and testing, homonym resolution is necessary to minimize 

the number of errors due to incorrect feature calculation. We use homonym resolution 
provided by the VitalVoice TTS system, which labels 96% of homonyms correctly [13].

The speech database used in the experiments was originally recorded as the Unit 
Selection speech database for the VitalVoice TTS system and consists of read speech 
by nine speakers (four male and five female). The texts read by the speakers are con-
temporary Russian works of fiction as well as newspaper articles on the topics of poli-
tics and technology. The database comprises over 50 hours of speech, which contain 
over 38,000 phrasal breaks. It was divided into a training set and a test set.

4.	 Results and discussion

4.1.	Break placement

Evaluating automatic phrase break placement is not straightforward, since the 
accuracy of the classification can be estimated in different ways. One way is to calcu-
late the accuracy of the prediction (break or no break) for each pair of words (a value 
sometimes called “juncture”). However, significantly more junctures in speech 
are non-breaks than breaks, so this measure will usually yield high results even for 
a poorly performing system. If we only consider breaks, then two types of errors have 
to be taken into account: breaks added by the algorithm that were not there in the data 
(False Alarms, FA), and breaks incorrectly skipped by the algorithm (False Rejections, 
FR). Some authors [6] devise their own evaluation system which incorporates both 
measures; however, we prefer to use the standard precision/recall/F-score evaluation.

In Table 1 we present the results for automatic break placement (CART and Ran-
dom Forest) compared to the results of the “baseline” rule-based algorithm that is cur-
rently implemented in the standard version of the VitalVoice TTS system [14]. The test 
set contained 47,819 junctures (word pairs inside sentences) and 6,186 phrase breaks.
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Table 1. Results of automatic break detection

Baseline TTS CART Random Forest

Correct junctures 43,254 (90.45%) 44,358 (92.76%) 44,723 (93.53%)
Correct breaks 5,042 (81.51%) 5,176 (83.67%) 4,624 (74.75%)
FA 3,421 (55.30%) 2,451 (39.62%) 1,534 (24.80%)
FR 1,144 (18.49%) 1,010 (16.33%) 1,562 (25.25%)
Recall 0.82 0.84 0.75
Precision 0.60 0.68 0.75
F-score 0.69 0.75 0.75

The results of both classifiers show an improvement on the baseline system: 
they yield a higher F-score, and the rates of FA to FR errors are more balanced. Both 
the CART and the RF classifiers show a maximum F-score of 75%; however, RF can 
be tuned so that the Precision and Recall counts are equal. CART shows a higher per-
centage of correct breaks due to a lower level of False Rejection errors; however, the 
RF classifier gives the highest percentage of correct junctures. Overall, RF can be con-
sidered the best-performing model.

The results of the classifier also compare well with those reported in the litera-
ture. For instance, for English [6] reports up to 91.1% correct junctures and the F-
score of up to 71.9; [7] improves their result and attains the F-score of 74.4, which 
is basically equal to our result.

However, some comments on the model’s performance are in order. First of all, 
an automatic performance test evaluates the breaks locally, without estimating the 
overall naturalness of the whole utterance (a discussion of this issue is given in [15]). 
So the fact that an utterance can usually be segmented in several correct ways remains 
unaccounted for. This problem is especially obvious if we consider different speakers’ 
performance when reading the same text. Our speech database contained the same 
text read by several speakers, so we had a chance to find out whether they placed pro-
sodic breaks at the same word junctures. We took a text read by three speakers (about 
500 sentences) and, taking the breaks placed by one of the speakers as the model 
to be “tested”, checked how it would fare if the other two speakers would be taken 
as target performances. Then we repeated the experiment with a second speaker. The 
results (F-scores) are given in Table 2.

Table 2. Comparison of speakers’ break placement (F-score)

Speaker 1 Speaker 2 Speaker 3

Speaker 1 as model 1.00 0.69 0.71
Speaker 2 as model 0.71 1.00 0.76

As was expected, not all breaks made by two different speakers when pronounc-
ing the same text actually overlap; if we compare three or more speakers, the discrep-
ancy would probably be even greater. On the other hand, treating only those breaks 
that coincide for several speakers as necessary and ignoring all others is clearly wrong, 
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because that would yield too few breaks. Interestingly, a statistical model predicts 
a speaker’s breaks better than another human speaker; this can be explained by the 
fact that the model is able to generalize over multiple speakers’ behavior.

Another aspect of this problem is that an automatic test that compares phrase 
breaks placed by the algorithm to those present in actual speech does not reflect the 
relative “gravity” of possible mistakes. Intuitively, some prosodic breaks in a sen-
tence seem necessary, while others can be omitted; on the other hand, some word 
combination can in principle be separated by a pause, while others should be pro-
nounced without a break. These distinctions are hard to formalize, so an automatic 
error detection system treats all errors as “equal”. Of course, an automatic classi-
fier should learn to avoid serious errors if the training database is sufficiently large, 
but in practice data sparceness is often a problem, especially for the CART classifier. 
In the course of subjective tests, we have identified several types of “egregious” er-
rors that significantly worsen the impression of a model’s performance, even if the 
overall error count is low:

•	 False alarm errors (inserted breaks): pauses after prepositions, conjunctions and 
other function words; pauses between agreeing words.

•	 False rejection errors (deleted breaks): lack of pauses on commas and other 
punctuation marks.
These errors are a particular problem for the CART classifier, though they are 

rare for the RF classifier. An advantage of a rule-based system is that it can easily 
exclude such errors by explicitly prohibiting pauses in certain word combinations and 
forcing them in others.

Finally, with a probability-based prosodic break model it is difficult to control 
rhythmic qualities of speech. The local character of decisions that the break place-
ment algorithm takes can result in a sentence having too many pauses, while another 
sentence of approximately the same length and structure may have no breaks alto-
gether. In a text that is sufficiently long, the frequency of breaks averages out and 
is judged by an automatic test as correct; however, specific sentences can be uncom-
fortable for the listener.

To sum up, even though a statistical break placement system imitates the per-
formance of a human speaker fairly successfully, it can also make errors that should 
be avoided in a working TTS system. A possible solution is to “tune” the probability-
based system by introducing a number of rules, which is the direction of our ongoing 
research.

One way to simplify the task for the break placement algorithm is to put obliga-
tory pauses in places of punctuation marks and use the probability-based algorithm 
only for the text chunks without punctuation. However, in Russian punctuation 
is sometimes misleading in the sense that it is purely conventional and does not mark 
a prosodic break. So the rules need to be more elaborate than just placing a break 
at each punctuation mark.

In addition, breaks in certain word combinations can be prohibited. However, 
if we just delete breaks, the sentence may end up with too few of them. This issue 
is connected with the more general problem of rhythm: controlling the length of pro-
sodic phrases and keeping the frequency of breaks constant seems to be necessary.
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4.2.	Break durations

The CART classifier predicts not only break positions but also the duration of each 
break it generates. Two versions of the model were trained. The first one predicts both 
break placement and break duration. The second one predicts break durations sepa-
rately; that is, given a predetermined position for a prosodic break, the model predicts 
the break length for this position. This model can be used in combination with a rule-
based break placement model or any other classifier.

In our experiments we first trained the classifier to predict the lengths of all pro-
sodic breaks in the dataset: both those inside sentences and between sentences. After 
that, we decided to separate the two tasks: predicting sentence-internal vs. sentence-
external breaks. It should be noted that in spontaneous speech, the notion of a sen-
tence is controversial, and such an approach would probably fail; in that case it would 
be more productive to distinguish between types of breaks such as long and short 
breaks. However, since we were dealing with read speech, we felt that speakers were 
aware of sentences in the text and marked them prosodically, and we wished to imi-
tate this effect in synthesized speech.

Break duration accuracy is much more difficult to evaluate than break placement 
accuracy because break lengths are not discrete and there can be no yes/no judge-
ments. For our first model (predicting both break placement and duration), the prob-
lem is that if we evaluate the lengths of the breaks correctly predicted by the classifier, 
there still remain the inserted breaks (FA-type errors) whose lengths will be unac-
counted for. For this reason, we decided to test the second model and to evaluate the 
correctness of the break length prediction that the classifier makes for each break 
position found in the test dataset. We considered a break as correct if its length did not 
deviate from the predicted length by more than a certain percentage, which we set 
as either 30% or 50%. The results are given in Table 3.

Table 3. Results for break length prediction

Correct sentence — 
external breaks, %

Correct sentence — 
internal breaks, %

General model, 30% window 63.07% 42.74%
Specialized models, 30% window 64.12% 60.36%
General model, 50% window 81.88% 63.68%
Specialized models, 50% window 80.99% 80.16%

This table presents results for the general model (modeling all breaks in the 
dataset) and the specialized models (two separate models for sentence-external 
and sentence-internal breaks). We can see that the specialized models give a better 
approximation both for sentence-internal and sentence-external breaks (except for 
sentence-external breaks with a 50% evaluation window, where the results for the 
general model are slightly better). The difference is especially large for sentence-
internal breaks, which are apparently not predicted accurately enough by the gen-
eral model.
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The baseline algorithm for break durations in the VitalVoice TTS system uses 
constants, so all sentence-external breaks have the same length, and there are only 
three types of sentence-internal breaks differing by their length. Implementing 
probability-based pause length prediction is promising because it makes synthesized 
speech sound less monotonous and more varied, which contributes to overall natural-
ness of speech. Subjective listening experiments with a new TTS system where con-
stants were replaced by predicted values showed positive results.

5.	 Conclusions and future research

In this paper we have presented a probability-based approach to prosodic analy-
sis of speech. The aim of our research was to evaluate different models of break place-
ment and break length prediction for use in a Russian TTS system. The following con-
clusions can be drawn at the present stage of the research:

1.	 A break placement algorithm based on a probabilistic model gives better test 
results than the baseline rule-based algorithm. However, subjective evalua-
tion shows that the presence of errors, even if they are rare, produces a bad 
impression on listeners, so some additional tweaking is needed in order 
to include the algorithm in a working TTS system. The CART model displays 
more errors than the RF model, and these errors are typically more “seri-
ous”; however, the RF model slows down the system due to its large size. 
Adapting statistical break placement methods for practical use will be the 
subject of future work.

2.	 CART-based prediction of pause lengths works well, especially if sentence-
internal and sentence-external breaks are modeled separately. This model 
has been included in a new version of the VitalVoice TTS system to replace 
the old constant-based system, and has received good reviews from expert 
listeners.
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