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Stemming from traditional “rule based” translation a “model based” ap-
proach is considered as an underlying model for statistical machine trans-
lation. This paper concerns with training on parallel corpora and application 
of this model for parsing and translation.

Preface

Statistical machine translation has made a significant breakthrough in machine 
translation within past decade. Due to availability of huge parallel corpora and in-
creased raw computational power it turned out that rather simple statistical methods 
rival (and beat from commercial point of view) the traditional rule based methods 
with foundation on years of linguistic research. Nevertheless, the further advances 
in statistical machine translation are considered to be related with more linguisti-
cally-rich models. Even such a commodity tool as Moses provides support for using 
parsing information in translation process.

Statistical Machine Translation — a short overview

In statistical machine translation target sentences are produced from sentences 
by so-called “noisy-channel” — a filter, which modifies input into output. The design 
of true filter is unknown but can be modeled by assuming some parametric model. 
The model’s parameters can be tuned and the structure can be validated by compar-
ing behavior of model and “true filter”. In case of machine translation the existing 
parallel corpora provide possible input and outputs for the modeled filter.

Originally models for statistical machine translation were very simple — a sequence 
of words. Then, to model the context dependency of translation, the phrase models and 
hierarchical phrase models were introduced [4]. It turned out that more complex mod-
els (with richer parametric space) are hard to trained. So parse trees are used to restrict 
possible phrases and labels familiar to linguists such as NP, VP are used to guess hier-
archical phrases [6]. Actually now this model is a context free transduction grammar.

Although linguistic notions are used, little linguistic research is in place. Instead, 
the corpora marked-up with parse trees are used to train parsers.
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Proposed approach

Language model used in our approach is based on well-established concepts 
of (noncomputational) linguistics. For the more detailed description, see [1]. Here 
is a brief summary of the model.

We represent a sentence by an HPSG-style tree. We distinguish between surface 
and semantic structure. Surface structure is language dependent, while semantic 
structure is deemed as universal.

Therefore semantic structure is the “model” for translation process. Nodes of the 
tree (constituents) are normally formed from the words of the sentence. The constitu-
ent bears syntactic and semantic features. One of the most important features is lexi-
cal class — the representation of the meaning of the word. The meaning for our system 
is the position within our semantic hierarchy.

The semantic hierarchy (SH) — thesaurus-like hierarchical tree. It consists 
of universal nodes that represent different semantic concepts — semantic classes 
(SCs), which are filled with lexical items of natural languages — lexical classes (LCs). 
The main principle of organizing information within our hierarchy is the inheritance 
principle: higher nodes denote general notions, while their descendants denote more 
specific meaning and inherit main semantic and syntactic characteristics (these char-
acteristics we call model) from their ancestors. Units of universal semantic informa-
tion in our system are called semantemes — some of them are added in the hierarchy 
explicitly, others (for example, semantemes representing grammatical information 
such as tense, voice etc.) are computed during parsing.

Dependencies between different units in the hierarchy are described in terms 
of semantic relations or semantic slots (which partly correlate to semantic roles, see 
[Fillmore 1968], for example). Semantic relations are also part of universal semantic 
structure and are language-independent. Dependencies between constituents on the 
surface syntactic level are called surface slots which are language-dependent. The cor-
respondence between surface and semantic relation is called diathesis.

Along with tree dependencies, constituents can be linked with non-tree relations 
such as conjunction, anaphora, control and movement.

Syntactic structure
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Semantic structure

For this model we have developed descriptions of semantic hierarchy, syntac-
tic paradigms (surface slots with government, agreement, order restrictions and 
relations of slots and grammatical features. The descriptions distinguish between 
allowed and not allowed structures. There is no much emphasis on disambiguation 
of allowed structures.

Now we can reconsider translation process as conversion from source text to target 
via source surface structure, semantic structure, target surface structure to target text.

Since the model is ambiguous, we can treat this process as probabilistic and try 
to estimate conditional probabilities of the model features.

The probabilistic model includes:
•	 Lexeme & POS ngram probabilities
•	 Lexical class probability
•	 Lexicalized surface dependency probability
•	 Lexicalized semantic dependency probability
•	 Surface to sematic slot mapping
•	 Surface slots ngram probabilities
•	 Lexical classes co-occurrence probabilities
•	 Lexical class translation probability
•	 Surface slot translation probability

We use Bayesian approach to construct probability from different components. 
Taking into consideration the unprepared part of the audience of the conference 
we provide explanations instead of formulas.

Lexeme & POS ngram probabilities

This is a traditional language model, except that we take lexeme+part of speech 
instead of words. It is used to guide search on initial stages of parsing and in cases 
of incomplete parse trees. Currently we use 3-grams.

Lexical class probability

Lexical class probability differs significantly between various domains (e.g. mean-
ings of word “file<noun>” in such domains as Law, Manufacturing or Information tech-
nologies). Thus, for the whole text we detect possible domains and calculate conditional 
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probability of different meaning of the words (lexical classes) for the Bayesian mixture 
of domains. For example, if we try to determine SC for the source lexeme file in the 
text for which we have established domain Information technologies, it is more real-
istic to choose the LC “file:FILE” (file as set of related data in computer). On the oppo-
site, of we deal with the text labeled as Manufacturing domain, it is more probable that 
we have “file:FILE_AS_TOOL” (“a hand tool which is used for rubbing hard objects”).

Processing of the whole text slightly improves precision of analysis and transla-
tion in comparison to sentence by sentence mode.

Lexicalized dependency probability

Lexicalized dependency probability (either surface or semantic) is a probabil-
ity of the dependency link in the parse tree conditioned on lexical classes of parent 
and child. Currently there are ca. 500 dependency labels and more than 100K lexical 
classes. It means we have to learn more than 5 × 1,012 parameters.

Although many combinations are prohibited by the model, still their number 
is huge in comparison to the volume of available parallel corpora (~1G of words).

We use hierarchy to approximate parameters.
For example, if we try to determine the correct SC for run in the sentence like 

“I need to run the clock”, we receive information from our hierarchy that clock is a device 
(the hole path up the tree is CLOCK: TIMEPIECE: DEVICE_FOR_MEASURING_AND_
COUNTING: DEVICE), and we know that the class DEVICE is statistically good combined 
with the class “ TO_ACTIVATE”, so it is more reliable to choose “run:TO_ACTIVATE”.

Lexicalized dependency probability is crucial for determination of the correct 
parsing tree and disambiguation of word senses.

Surface to sematic slot mapping

To select semantic slot for surface slot at analysis and to select surface slot for se-
mantic slot at synthesis we collect co-occurrence data for surface and semantic slots.

Lexical classes co-occurrence probabilities

Domain depended lexical class probability provides only a rough adaptation 
to a particular large-scale domain. There are words, which senses do not correlate 
with easy identifiable domains or are indistinguishable within one, or there is no much 
text to identify domain and the dependency context is neutral. For example, in the 
sentence “Washington criticized Syria.” we need to distinguish between the city and 
the surname (this difference does not influence translation, but is important for other 
applications of parsing). In this case co-occurrence of classes can help determine the 
right analysis if from the training data we know that Washington as a person had little 
to do with Syria.
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Сo-occurrence of classes is computed for siblings in dependency tree, for all 
words with limited neighborhood and for conjuncted words. Just as for the dependen-
cies the number of parameters is quadratic to number of class. Here the approximation 
with hierarchy is used as well.

Lexical classes translation probability

Although the model was originally planned to have rich semantic features (se-
mantemes) for differentiation between synonyms of one semantic class across lan-
guages, in practice we augmented it with conditional probability of synonym in target 
language for the give synonym in source language.

Surface slot translation probability

In theory, surface slot selection at target language must be guided by source se-
mantic slot and features of child and parent constituents. But it turns out that it is not 
possible to take into account all cases in the model. Thus we use as well probabilistic 
model which estimates target diathesis probability by source surface slot and com-
plexity of child subtree.

Hierarchical approximation of lexicalized pairwise correlations

Here we present our method of computing co-occurrence statistics in case of lack 
of data by using semantic hierarchy.

The co-occurrence we need to compute is conditional probability 

)()(
)(log

BPAP
BAP ∩

)()(
)(log
BNAN
NBAN ∩

)( BAN ∩

∏
−=
−=

++

++

∩∩
∩∩

1...0
1...0

)()1()1()(

)1()1()()(

)()(
)()(

Km
Ln

mnmn

mnmn

BANBAN
BANBAN )(iA

,

where A and B are two lexical classes. In case we have enough data we can use counts 
to calculate this value )()(

)(log
BPAP
BAP ∩

)()(
)(log
BNAN
NBAN ∩

)( BAN ∩

∏
−=
−=

++

++

∩∩
∩∩

1...0
1...0

)()1()1()(

)1()1()()(

)()(
)()(

Km
Ln

mnmn

mnmn

BANBAN
BANBAN )(iA

,

But for many class pairs 
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 is either very small (which makes very un-
reliable estimations) or zero. The required probability can be decomposed with the 
use of hierarchy: , where — is ith ancestor of A
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Thus we can use counts of events for the classes in higher levels of hierarchy. 
These counts of superclasses are larger and give more accurate estimates of probability.

Training the probabilistic model

To train the model we have to have correct parse trees to estimate probabilities 
of model components. There is no such resource of adequate size. To cope with this 
problem we use parallel corpora and the parse trees are “hidden variables”.

To make it work we need to have alignment of trees and a way to generate 
aligned parse trees. Alignment model is very simple — we condition the probability 
of alignment on, distance within hierarchy, on whether there are the same dependen-
cies in aligned trees, and on the order of aligned constituents. To correctly handle lists 
of out-of-dictionary words (for example named entities) we also compute translitera-
tion distance for such words.

To guess about hidden variable, that is presumably correct parse trees, we modi-
fied our parsing algorithm in the following way:

•	 We align two dependency graphs and attribute more weight to aligned constitu-
ents and links.

•	 We generate parse trees from the two graphs. They are generated by order of di-
minishing probability of parse structure to be correct and to produce the avail-
able translation.

•	 We align pairs of parse trees and select best trees (both by parsing and alignment 
quality).

•	 For further parameter estimation we utilize several generated trees to mitigate 
overfitting to erroneous parsing results.
See the example below on how the universal semantic structure and the parallel 

analysis help disambiguated classical case.

Parallel semantic structures
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Resent research is concentrated on computing probabilistic model parameters 
for other linguistic descriptions such control, movement and ellipsis.

We also experimenting with non-Bayesian estimation of parameters, since 
Bayesian approach assumes independence of features which is hard to achieve.

Out of model translation

It is not feasible to cover complex, huge and dynamic languages by manual 
model. Two problems that we see are:

•	 There are too many words.
•	 Many contextual translations go across the hierarchy.

To cope with the first problem we have introduced a special lexeme for unknown 
words. We predict the morphological features of unknown (to our system) word 
by making hypothesis about its flexion. Unknown word lexeme is mapped to different 
places in the hierarchy, thus we also try to guess the rough meaning of the word, e.g. 
person, action, artifact.

At present, we either transliterate the unknown word or keep them untranslated. 
We could as well mine possible translation from alignments of parallel corpora.

The second problem is that some words in some context are translated in the ad-
jacent or sometimes very far lexical classes of hierarchy (e.g. power plant — [электро]
станция). As with phrase-based statistical machine translation we automatically cap-
ture regular out-of-hierarchy translations and use them as collocations. In compari-
son to phrases in SMT and collocations in traditional dictionaries our collocations are 
parse tree fragments. For more about mining the collocation, see [7].

To achieve the good quality of translation, comparable to popular online ser-
vices, the system should be trained on huge, kept up-to-date internet corpora. Cur-
rently we train our system on roughly 10^8 sentences.
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Evaluation

Internal evaluations

Internal evaluation is performed on several parallel and marked-up corpora.
We use modified BLEU to estimate translation quality. To our opinion, this vari-

ant of BLEU is more suitable for flective languages — only 1-gramms are matched 
literally, while higher-order n-gramms are reduced to lemmas. Absolute BLUE-score 
is very dependent to the corpora and to the system. For us it is 0.15-0.20. We rely 
on it to control incremental changes in the model and the algorithm.

Some corpora are partially marked-up with surface and semantic dependencies 
and lexical classes. We control the sentence level precision which is within 60-80%.

We also have small internal stand-out corpora to manually estimate and com-
pare the translation quality with other systems.

External evaluations

It is hard to compare parsing performance of different systems if they are based 
on different linguistic principles. Anyway such attempt has been done at previous Dia-
log conferences. In [3] the part of speech disambiguation was tested (which indirectly 
correlates with parsing performance if parsing is used for this purpose). In [2] the 
parsing structures of different systems have been manually compared with a certain 
degree of freedom to match different approaches to the syntax. In both evaluations 
the system has shown good results.

This year the translation quality is estimated by range of automatic scores and 
by manual translation. We have achieved good results in both comparisons. The sys-
tem was run in per-sentence mode without utilizing surrounding context. Although 
this context was available we were not able to use due to technical problems.

Conclusion

The development of the system and its good results in evaluations proves the 
plausibility of the linguistically oriented model-based approach to natural language 
processing. Due to the universality of the model, it can be used in many NLP tasks. 
Trained on the parallel corpora it can then perform translation, parsing, word sense 
disambiguation.
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